1 |
CULLER A J, MCNAMARA J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11): 2393-2406.
|
2 |
YANG C, LI G S, WAN Z Q. Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter[J]. Science China Technological Sciences, 2012, 55(3): 831-840.
|
3 |
LAMORTE N, FRIEDMANN P P. Aerothermoelastic and aeroelastic studies of hypersonic vehicles using CFD[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
|
4 |
JI C, LI F, LIU Z Q. Development and testing of hypersonic flutter test capability[J]. AIAA Journal, 2019, 57(7): 2989-3002.
|
5 |
茹科夫斯基中央空气流体动力研究院.李志译. 气动弹性[M]. 上海: 上海交通大学出版社, 2020: 383-384.
|
|
TsAGI.LI Z translater. Aeroelastic theory and practice[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 383-384 (in Chinese).
|
6 |
KEARNS J P. Flutter simulation[J]. APL Technical Digest, 1962.
|
7 |
潘树祥, 齐丕骞. 地面模拟热颤振试验研究[J]. 强度与环境, 1984, 11(2): 8-12.
|
|
PAN S X, QI P Q. Experimental study on simulated ground thermal flutter[J]. Structure & Environment Engineering, 1984, 11(2): 8-12 (in Chinese).
|
8 |
SMYSLOV V, DIJKSTRA K, KARKLE P. The experience in ground vibration tests of flexible flying vehicles using PRODERA equipment and some additional tasks[C]∥European Conference for Aerospace Sciences (EUCASS), 2005.
|
9 |
KARKLE P, SMYSLOV V. Electromechanical simulation method in dynamic aeroelasticity usage experience and future trends[C]∥International Forum on Aeroelasticity and Structural Dynamics, 2007: 1-10.
|
10 |
ZENG J, KINGSBURY D, RITZ E, et al. GVT-based ground flutter test without wind tunnel[C]∥52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
|
11 |
许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11): 1947-1957.
|
|
XU Y T, WU Z G, YANG C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1947-1957 (in Chinese).
|
12 |
WANG B W, FAN X L. Ground flutter simulation test based on reduced order modeling of aerodynamics by CFD/CSD coupling method[J]. International Journal of Applied Mechanics, 2019, 11(1): 1950008.
|
13 |
WU Z G, CHU L F, YUAN R Z, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China Technological Sciences, 2012, 55(9): 2482-2488.
|
14 |
WU Z G, MA C J, YANG C. New approach to the ground flutter simulation test[J]. Journal of Aircraft, 2016, 53(5): 1578-1580.
|
15 |
SONG Q Z, YANG Z C, WANG W. Robust control of exciting force for vibration control system with multi-exciters[J]. Science China Technological Sciences, 2013, 56(10): 2516-2524.
|
16 |
宋巧治, 王彬文, 李晓东. 基于机翼颤振风洞试验模型的地面颤振模拟试验验证[J]. 工程与试验, 2021, 61(2): 3-7.
|
|
SONG Q Z, WANG B W, LI X D. Ground flutter simulation test validation based on wing flutter wind tunnel test model[J]. Engineering & Test, 2021, 61(2): 3-7 (in Chinese).
|
17 |
陈浩宇, 王彬文, 宋巧治, 等. 高超声速飞行器热颤振研究现状与展望[J]. 航空工程进展, 2022, 13(1): 19-27.
|
|
CHEN H Y, WANG B W, SONG Q Z, et al. Research progress and prospect of thermal flutter of hypersonic vehicles[J]. Advances in Aeronautical Science and Engineering, 2022, 13(1): 19-27 (in Chinese).
|
18 |
MCNAMARA J J. Aeroelastic and aerothermoelastic behavior of two and three dimensional surfaces in hypersonic flow[D]. Michigan: University of Michigan, 2005.
|
19 |
Software MSC. MSC NASTRAN: Aeroelastic analysis user’s guide[EB/OL]. Santa Ana: MSC Software Corporation, 2012: 32-40.
|
20 |
管德. 非定常空气动力计算[M]. 北京: 北京航空航天大学出版社, 1991: 142-157.
|
|
GUAN D. Unsteady aerodynamic calculation[M]. Beijing: Beihang University Press, 1991: 142-157 (in Chinese).
|
21 |
刘俊. 基于代理模型的高效气动优化设计方法及应用[D]. 西安: 西北工业大学, 2015: 26-28.
|
|
LIU J. Efficient surrogate-based optimization method and its application in aerodynamic design[D]. Xi’an: Northwestern Polytechnical University, 2015: 26-28 (in Chinese) .
|
22 |
胡巍, 杨智春, 谷迎松. 带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J]. 西北工业大学学报, 2013, 31(5): 810-815.
|
|
HU W, YANG Z C, GU Y S. A new and effective method for reducing order of aerodynamics of a wing with control surface for ground flutter test[J]. Journal of Northwestern Polytechnical University, 2013, 31(5): 810-815 (in Chinese).
|
23 |
李晓东, 杨文岐, 刘浩. 基于纯随机激励的热模态试验技术研究[J]. 强度与环境, 2015, 42(2): 52-56.
|
|
LI X D, YANG W Q, LIU H. The study of thermo-modal test technique based on true-random excitation[J]. Structure & Environment Engineering, 2015, 42(2): 52-56 (in Chinese).
|
24 |
吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6): 1861-1875.
|
|
WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1 200 ℃ high-temperature environments[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1861-1875 (in Chinese).
|