收稿日期:
2022-03-10
修回日期:
2022-03-30
接受日期:
2022-04-20
出版日期:
2023-04-15
发布日期:
2022-05-09
通讯作者:
项乐
E-mail:13126986485@163.com
基金资助:
Le XIANG(), Kaifu XU, Hui CHEN, Suibo LI, Kai ZHANG, Shixin LIU
Received:
2022-03-10
Revised:
2022-03-30
Accepted:
2022-04-20
Online:
2023-04-15
Published:
2022-05-09
Contact:
Le XIANG
E-mail:13126986485@163.com
Supported by:
摘要:
涡轮泵是泵压式低温液体火箭发动机的核心部件,素有发动机的心脏之称,其性能提升受空化条件限制。由于低温介质的空化热力学效应,低温空化过程相较于常温水空化更为复杂。首先介绍了低温涡轮泵空化实验系统的理论基础和设计要点,梳理了表征空化热效应的相似准则发展现状。接着详细介绍了目前国际上具有代表性的低温液体火箭发动机涡轮泵空化流动实验系统和相应的代表性研究成果,结果表明以热敏介质替代低温工质开展实验是当前技术发展趋势,但需要控制好不同介质之间的热效应相似换算关系;以先进光学手段和无线数据传输技术为代表的先进测试手段已逐渐被引入空化流场分析中,是值得进一步发展的研究方向。最后对空化热效应理论建模工作进展进行了总结归纳,发现当前的相关工作主要集中在稳态空化性能,针对非稳态特性的理论建模工作进展缓慢,亟待进一步的深入研究。本文可为进一步提升中国泵压式低温液体火箭发动机性能和可靠性提供有意义的参考。
中图分类号:
项乐, 许开富, 陈晖, 李随波, 张凯, 刘诗鑫. 液体火箭发动机涡轮泵低温空化实验研究进展[J]. 航空学报, 2023, 44(7): 27131-027131.
Le XIANG, Kaifu XU, Hui CHEN, Suibo LI, Kai ZHANG, Shixin LIU. Experimental studies on cavitating flow for liquid rocket engine cryogenic turbopump: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 27131-027131.
1 | 谭永华. 大推力液体火箭发动机研究[J]. 宇航学报, 2013, 34(10): 1303-1308. |
TAN Y H. Research on large thrust liquid rocket engine[J]. Journal of Astronautics, 2013, 34(10): 1303-1308 (in Chinese). | |
2 | 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报, 2019, 40(5): 122609. |
YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122609 (in Chinese). | |
3 | 杨宝锋, 贾少锋, 李斌, 等. 大偏心及大扰动下涡轮泵密封转子动力特性[J]. 火箭推进, 2019, 45(6): 1-9. |
YANG B F, JIA S F, LI B, et al. Investigation on rotordynamic characteristics of a turbopump seal under large eccentricities and disturbances[J]. Journal of Rocket Propulsion, 2019, 45(6): 1-9 (in Chinese). | |
4 | 汪广旭, 谭永华, 陈建华, 等. 考虑喷注流强分布的纵向稳定性建模与分析[J]. 航空学报, 2021, 42(6): 124510. |
WANG G X, TAN Y H, CHEN J H, et al. Modeling and analysis of longitudinal stability considering injection intensity distribution[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124510 (in Chinese). | |
5 | ZHANG W D, LIU C, WANG W. Innovation and outlook of the new generation of cryogenic and quick-launch launch vehicle[J]. Aerospace China, 2017, 18(2): 3-12. |
6 | YANG B F, LI B, CHEN H, et al. Numerical investigation of the clocking effect between inducer and impeller on pressure pulsations in a liquid rocket engine oxygen turbopump[J]. Journal of Fluids Engineering, 2019, 141(7): 071109. |
7 | WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics, 2021, 34(8): 48-57. |
8 | 李惠敏, 李向阳, 蒋建园, 等. 诱导轮出口参数对高速离心泵性能的影响[J]. 火箭推进, 2020, 46(1): 69-75. |
LI H M, LI X Y, JIANG J Y, et al. Influence of outlet parameters of inducer on performance of high speed centrifugal pump[J]. Journal of Rocket Propulsion, 2020, 46(1): 69-75 (in Chinese). | |
9 | 项乐, 陈晖, 谭永华, 等. 诱导轮空化流动特性实验研究[J]. 农业机械学报, 2019, 50(12): 125-132. |
XIANG L, CHEN H, TAN Y H, et al. Experiment of cavitating flow characteristics of inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 125-132 (in Chinese). | |
10 | 李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864. |
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864 (in Chinese). | |
11 | 陈晖, 李斌, 张恩昭, 等. 液体火箭发动机高转速诱导轮旋转空化[J]. 推进技术, 2009, 30(4): 390-395. |
CHEN H, LI B, ZHANG E Z, et al. Rotating cavitation of the high-speed rotational inducer of LPRE[J]. Journal of Propulsion Technology, 2009, 30(4): 390-395 (in Chinese). | |
12 | CHEN T R, CHEN H, LIU W C, et al. Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode[J]. Applied Thermal Engineering, 2019, 156: 63-76. |
13 | CHEN T R, CHEN H, LIANG W D, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition[J]. International Journal of Heat and Mass Transfer, 2019, 132: 618-630. |
14 | 项乐, 谭永华, 陈晖, 等. 基于对流换热的低温空化流动数值模拟研究[J]. 推进技术, 2019, 40(6): 1314-1323. |
XIANG L, TAN Y H, CHEN H, et al. Numerical study of cryogenic cavitation based on convection heat transfer[J]. Journal of Propulsion Technology, 2019, 40(6): 1314-1323 (in Chinese). | |
15 | 项乐, 陈晖, 谭永华, 等. 液体火箭发动机诱导轮空化热力学效应研究[J]. 推进技术, 2020, 41(4): 812-819. |
XIANG L, CHEN H, TAN Y H, et al. Study of cavitation thermodynamic effect of liquid rocket engine inducer[J]. Journal of Propulsion Technology, 2020, 41(4): 812-819 (in Chinese). | |
16 | 任孝文, 李平, 陈宏玉, 等. 管路中常温推进剂的两相充填特性仿真[J]. 航空学报, 2022, 43(2): 125047. |
REN X W, LI P, CHEN H Y, et al. Simulation of two-phase filling characteristics of storable propellant in pipelines[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 125047 (in Chinese). | |
17 | 时素果, 王国玉. 一种修正的低温流体空化流动计算模型[J]. 力学学报, 2012, 44(2): 269-277. |
SHI S G, WANG G Y. A modified Kubota cavitation model for computations of cryogenic cavitating flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 269-277 (in Chinese). | |
18 | BRENNEN C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 1995. |
19 | 季斌, 白晓蕊, 祝叶, 等. 水力机械空化水动力学的几个基础问题研究[J]. 水动力学研究与进展, 2017, 32(5): 542-550. |
JI B, BAI X R, ZHU Y, et al. A review of the fundamental investigations of cavitation in hydraulic machinery[J]. Chinese Journal of Hydrodynamics, 2017, 32(5): 542-550 (in Chinese). | |
20 | 潘中永, 袁寿其. 泵空化基础[M]. 镇江: 江苏大学出版社, 2013: 70-75. |
PAN Z Y, YUAN S Q. Fundamentals of cavitation in pumps[M]. Zhenjiang: Jiangsu University Press, 2013: 70-75 (in Chinese). | |
21 | FRANC J P, MICHEL J M. Fundamentals of cavitation[M]. Berlin: Springer, 2004. |
22 | LEMMON E W, MCLINDEN M O, HUBER M L. REFPROP: Reference fluid thermodynamic and transport properties: Version 9.1[DB/OL]. Gaithersburg: NIST, 2013. |
23 | PETKOVŠEK M, DULAR M. IR measurements of the thermodynamic effects in cavitating flow[J]. International Journal of Heat and Fluid Flow, 2013, 44: 756-763. |
24 | CHEN T R, HUANG B, WANG G Y, et al. Numerical study of cavitating flows in a wide range of water temperatures with special emphasis on two typical cavitation dynamics[J]. International Journal of Heat and Mass Transfer, 2016, 101: 886-900. |
25 | TSENG C C, SHYY W. Modeling for isothermal and cryogenic cavitation[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3): 513-525. |
26 | KIM J, SONG S J. Measurement of temperature effects on cavitation in a turbopump inducer[J]. Journal of Fluids Engineering, 2016, 138(1): 011304. |
27 | IGA Y, FURUSAWA T, SASAKI H. Interaction between thermodynamic suppression effect and Reynolds number promotion effect on cavitation in hot water[C]∥ Proceedings of the 10th International Symposium on Cavitation (CAV2018). Washington, D.C.: ASME Press, 2018: 576-580. |
28 | STAHL H A, STEPANOFF A J. Thermodynamic aspects of cavitation in centrifugal pumps[J]. Journal of Fluids Engineering, 1956, 78(8): 1691-1693. |
29 | MOORE R, RUGGERI R. Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds: NASA-TN-D-5292[R]. Washington, D.C.: NASA, 1969. |
30 | HORD J. Cavitation in liquid cryogens Ⅱ—Hydrofoil: NASA CR-2156[R]. Washington, D.C.: NASA, 1973. |
31 | HORD J. Cavitation in liquid cryogens—Ogives: NASA CR-2242[R]. Washington, D.C.: NASA, 1973. |
32 | 朱佳凯. 低温空化非稳态特性和机理研究[D]. 杭州: 浙江大学, 2018. |
ZHU J K. Study on unsteady characteristics and mechanisms of cryogenic cavitation[D]. Hangzhou: Zhejiang University, 2018 (in Chinese). | |
33 | 时素果. 空化热力学效应及数值计算模型研究[D]. 北京: 北京理工大学, 2012. |
SHI S G. Study of cavitation thermodynamic and numerical model[D]. Beijing: Beijing Institute of Technology, 2012 (in Chinese). | |
34 | REBOUD J L, SAUVAGE B E, DESLAUX J. Partial cavitation model for cryogenic fluids[C]∥ Cavitation and Multiphase Flow Forum, 1990: 75-80. |
35 | DESHPANDE M, FENG J Z, MERKLE C L. Numerical modeling of the thermodynamic effects of cavitation[J]. Journal of Fluids Engineering, 1997, 119(2): 420-427. |
36 | 陈泰然. 低温介质空化流动特性及其热力学效应研究[D]. 北京: 北京理工大学, 2020. |
CHEN T R. Investigation of unsteady characteristics and thermodynamic effects of cryogenic cavitating flows[D]. Beijing: Beijing Institute of Technology, 2020 (in Chinese). | |
37 | FRANC J P, REBATTET C, COULON A. An experimental investigation of thermal effects in a cavitating inducer[J]. Journal of Fluids Engineering, 2004, 126(5): 716-723. |
38 | FRANC J P, PELLONE C. Analysis of thermal effects in a cavitating inducer using Rayleigh equation[J]. Journal of Fluids Engineering, 2007, 129(8): 974-983. |
39 | FRANC J P, BOITEL G, RIONDET M, et al. Thermodynamic effect on a cavitating inducer—Part I: Geometrical similarity of leading edge cavities and cavitation instabilities[J]. Journal of Fluids Engineering, 2010, 132(2): 021303. |
40 | EHRLICH D A, MURDOCK J W. A dimensionless scaling parameter for thermal effects on cavitation in turbopump inducers[J]. Journal of Fluids Engineering, 2015, 137(4): 041103. |
41 | CERVONE A, BRAMANTI C, RAPPOSELLI E, et al. Thermal cavitation experiments on a NACA 0015 hydrofoil[J]. Journal of Fluids Engineering, 2006, 128(2): 326-331. |
42 | 项乐, 谭永华, 陈晖, 等. 水温对空化流动影响的数值研究[J]. 推进技术, 2020, 41(6): 1324-1333. |
XIANG L, TAN Y H, CHEN H, et al. Numerical study of effects of water temperature on cavitating flow[J]. Journal of Propulsion Technology, 2020, 41(6): 1324-1333 (in Chinese). | |
43 | ACOSTA A J. An experimental study of cavitating inducers[C]∥ Proceedings of the Second O.N.R. Symposium on Naval Hydrodynamics. Washington, D.C.: [s.n.], 1958: 533-557. |
44 | BALL C L, MENG P R. Cavitation performance of 84°helical pump inducer operated in 37°R and 42°R liquid hydrogen: NASA TM X-1360[R]. Washington, D.C.: NASA, 1967. |
45 | MENG P R, MOORE R D. Cavitation and non-cavitation performance of 78° helical inducer in hydrogen: NASA TM X-2131[R]. Washington, D.C.: NASA, 1968. |
46 | KOVICH G. Comparison of predicted and experimental cavitation performance of 84° helical inducer in water and hydrogen: NASA TN D-7016[R]. Washington, D.C.: NASA, 1970. |
47 | KOVICH G. Experimental and predicted cavitation performance of 80.6° helical inducer in high-temperature water: NASA-TN-D-6809[R]. Washington, D.C.: NASA, 1970. |
48 | YOSHIDA Y, KIKUTA K, HASEGAWA S, et al. Thermodynamic effect on a cavitating inducer in liquid nitrogen[J]. Journal of Fluids Engineering, 2007, 129(3): 273-278. |
49 | KIKUTA K, YOSHIDA Y, WATANABE M, et al. Thermodynamic effect on cavitation performances and cavitation instabilities in an inducer[J]. Journal of Fluids Engineering, 2008, 130(11): 111302. |
50 | ITO Y, TANI N, KURISHITA Y, et al. New visualization test facility for liquid nitrogen and water cavitation in rotating inducer[C]∥ Proceedings of the 8th International Symposium on Cavitation. Singapore: Research Publishing Services, 2012: 74-85. |
51 | ITO Y, TSUNODA A, KURISHITA Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects[J]. Journal of Propulsion and Power, 2015, 32(1): 71-82. |
52 | CERVONE A, TESTA R, BRAMANTI C, et al. Thermal effects on cavitation instabilities in helical inducers[J]. Journal of Propulsion and Power, 2005, 21(5): 893-899. |
53 | TORRE L, CERVONE A, PASINI A, et al. Experimental characterization of thermal cavitation effects on space rocket axial inducers[J]. Journal of Fluids Engineering, 2011, 133(11): 111303. |
54 | EHRLICH D A, VALENTINI D, PASINI A, et al. A water test facility liquid rocket engine turbopump cavitation testing[C]∥ Proceedings of the 7th International Symposium on Cavitation, 2009: 64-71. |
55 | LI X, LI J W, WANG J, et al. Study on cavitation instabilities in a three-bladed inducer[J]. Journal of Propulsion and Power, 2015, 31(4): 1051-1056. |
56 | 崔宝玲, 陈杰, 李晓俊, 等. 高速诱导轮离心泵内空化发展可视化实验与数值模拟[J]. 农业机械学报, 2018, 49(4): 148-155. |
CUI B L, CHEN J, LI X J, et al. Experiment and numerical simulation of cavitation evolution in high speed centrifugal pump with inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 148-155 (in Chinese). | |
57 | KAMIJO K, YOSHIDA M, TSUJIMOTO Y. Hydraulic and mechanical performance of LE-7 LOX pump inducer[J]. Journal of Propulsion and Power, 1993, 9(6): 819-826. |
58 | UCHIUMI M, KONNO A, KAMIJO K, et al. Improvement of inlet flow characteristics of LE-7A liquid hydrogen pump[C]∥ 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002: 4161. |
59 | YOSHINOBU T, YOSHIKI Y, YASUKAZU M, et al. Observations of oscillating cavitation of an inducer[J]. Journal of Fluids Engineering, 1997, 119(4): 775-781. |
60 | TSUJIMOTO Y, KAMIJO K, YOSHIDA Y. A theoretical analysis of rotating cavitation in inducers[J]. Journal of Fluids Engineering, 1993, 115(1): 135-141. |
61 | FRANC J P, BOITEL G, RIONDET M, et al. Thermodynamic effect on a cavitating inducer—Part Ⅱ: On-board measurements of temperature depression within leading edge cavities[J]. Journal of Fluids Engineering, 2010, 132(2): 1. |
62 | YOSHIDA Y, SASAO Y, OKITA K, et al. Influence of thermodynamic effect on synchronous rotating cavitation[J]. Journal of Fluids Engineering, 2007, 129(7): 871-876. |
63 | YOSHIDA Y, SASAO Y, WATANABE M, et al. Thermodynamic effect on rotating cavitation in an inducer[J]. Journal of Fluids Engineering, 2009, 131(9): 091302. |
64 | ITO Y, SATO Y, NAGASAKI T. Theoretical analyses of the number of backflow vortices on an axial pump or compressor[C]∥ Proceedings of ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. Washington, D.C.: ASME Press, 2019: 031103 |
65 | PACE G, VALENTINI D, PASINI A, et al. Analysis of flow instabilities on a three-bladed axial inducer in fixed and rotating frames[J]. Journal of Fluids Engineering, 2019, 141(4): 041104. |
66 | HADAVANDI R, PACE G, VALENTINI D, et al. Identification of cavitation instabilities on a three-bladed inducer by means of strain gages[J]. Journal of Fluids Engineering, 2020, 142(2): 021210. |
67 | LETTIERI C, SPAKOVSZKY Z, JACKSON D, et al. Characterization of cavitation instabilities in a four-bladed turbopump inducer[J]. Journal of Propulsion and Power, 2017, 34(2): 510-520. |
68 | KIM J, SONG S J. Measurement of thermal parameter and Reynolds number effects on cavitation instability onset in a turbopump inducer[J]. Journal of the Global Power and Propulsion Society, 2017, 1: H5DYU3. |
69 | KIM J, SONG S J. Visualization of rotating cavitation oscillation mechanism in a turbopump inducer[J]. Journal of Fluids Engineering, 2019, 141(9): 091103. |
70 | XIANG L, CHEN H, TAN Y H, et al. Study of thermodynamic cavitation effects in an inducer[J]. Journal of Propulsion and Power, 2019, 36(3): 312-322. |
71 | XIANG L, TAN Y H, CHEN H, et al. Experimental investigation of cavitation instabilities in inducer with different tip clearances[J]. Chinese Journal of Aeronautics, 2021, 34(9): 168-177. |
72 | LI W, WU P, YANG Y F, et al. Investigation of the cavitation performance in an engine cooling water pump at different temperature[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2021, 235(5): 1094-1102. |
73 | GE M M, ZHANG G J, PETKOVŠEK M, et al. Intensity and regimes changing of hydrodynamic cavitation considering temperature effects[J]. Journal of Cleaner Production, 2022, 338: 130470. |
74 | ZHANG H C, ZUO Z G, MØRCH K A, et al. Thermodynamic effects on Venturi cavitation characteristics[J]. Physics of Fluids, 2019, 31(9): 097107. |
75 | STEPANOFF A J. Cavitation in centrifugal pumps with liquids other than water[J]. Journal of Engineering for Power, 1961, 83(1): 79-89. |
76 | GELDER T F, MOORE R, RUGGERI R. Cavitation similarity considerations based on measured pressure and temperature depressions in cavitated regions of Freon 114: NASA-TN-D-3509[R]. Washington, D.C.: NASA, 1966. |
77 | MOORE R, RUGGERI R. Prediction of thermodynamic effects of developed cavitation based on liquid-hydrogen and Freon-114 data on scaled venturis[R]. Washington, D.C.: NASA, 1968. |
78 | BRENNEN C E. Hydrodynamics of pumps[M]. Norwich: Concepts ETI, 1994. |
[1] | 童晟翔, 史志伟, 耿玺, 王力爽, 孙志坤, 陈其昌. 组合式仿枫树子飞行器与空中分体技术[J]. 航空学报, 2024, 45(6): 629590-629590. |
[2] | 宋海浪, 张建东, 史国庆, 杨啟明, 张耀中. 航空火控系统试飞综合评估技术与方法探讨[J]. 航空学报, 2024, 45(5): 529687-529687. |
[3] | 李子光, 成鹏, 李清廉, 白晓, 曹鹏进. 背压对气液针栓单元喷雾分布特性的影响[J]. 航空学报, 2024, 45(2): 128614-128614. |
[4] | 赵清风, 周洲, 李明浩, 徐德. 分布式动力翼-诱导翼面推进-气动耦合模型[J]. 航空学报, 2024, 45(10): 129252-129252. |
[5] | 张桂玮, 刘召庆, 朱镭, 张衡, 田玮, 李伟光, 杨智春. 地面颤振模拟试验技术研究进展[J]. 航空学报, 2024, 45(10): 29229-029229. |
[6] | 邓有朋, 范佳宣, 郑岩, 王振亚, 吕勇梁, 李雨霄. 不完全信息下多智能体对手建模[J]. 航空学报, 2023, 44(S2): 729782-729782. |
[7] | 程晓玉, 韩鹏, 贺维, 张朋, 韩晓霞, 李英梅, 曹友. 一种新的基于可解释性置信规则库的飞轮健康状态评估模型[J]. 航空学报, 2023, 44(S1): 172-184. |
[8] | 王宏越, 王兵, 方国东, 孟松鹤. 2.5D机织浅交弯联复合材料数字单元建模分析[J]. 航空学报, 2023, 44(9): 227478-227478. |
[9] | 董蒙, 谭永华, 何闯, 邢理想, 赵瑞国. 发动机泵后模拟供应系统频率特性的液流激励试验[J]. 航空学报, 2023, 44(9): 127419-127419. |
[10] | 李天梅, 司小胜, 张建勋. 多源传感监测线性退化设备数模联动的剩余寿命预测方法[J]. 航空学报, 2023, 44(8): 227190-227190. |
[11] | 刘晓雨, 孙立国, 谭文倩, 魏金鹏, 王维军, 焦俊凯. 基于相似构型决策的舰载机驾驶员建模与评估[J]. 航空学报, 2023, 44(4): 126329-126329. |
[12] | 陈泽灏, 陈晖, 高玉闪, 张航. 基于模型的液体火箭发动机故障诊断技术回顾与展望[J]. 航空学报, 2023, 44(23): 629016-629016. |
[13] | 张效溥, 任枫, 徐鹏里, 李志敏, 宿彩虹. 基于故障分辨能力的火箭发动机测量参数选择方法[J]. 航空学报, 2023, 44(22): 128522-128522. |
[14] | 李怀璐, 王旭, 王霄, 赵彤, 张伟伟. 大迎角机动飞行的气动力建模与飞行仿真[J]. 航空学报, 2023, 44(19): 128410-128410. |
[15] | 巴晓甫, 薛红前, 李西宁. 随位串联三坐标定位器定位精度建模与试验[J]. 航空学报, 2023, 44(19): 428469-428469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学