陈唯实1(), 刘佳2, 王青斌1, 卢贤锋1, 张洁1, 陈小龙3, 黄毅峰1
收稿日期:
2021-12-08
修回日期:
2021-12-27
接受日期:
2022-01-27
出版日期:
2023-03-15
发布日期:
2022-02-17
通讯作者:
陈唯实
E-mail:wishchen@buaa.edu.cn
基金资助:
Weishi CHEN1(), Jia LIU2, Qingbin WANG1, Xianfeng LU1, Jie ZHANG1, Xiaolong CHEN3, Yifeng HUANG1
Received:
2021-12-08
Revised:
2021-12-27
Accepted:
2022-01-27
Online:
2023-03-15
Published:
2022-02-17
Contact:
Weishi CHEN
E-mail:wishchen@buaa.edu.cn
Supported by:
摘要:
气象雷达组网特别适用于大陆范围内鸟类大规模活动的观测。首先介绍了美国和欧洲相对成熟的基于气象雷达组网的鸟情预警系统,并对二者的性能进行了对比分析。然后,从目标回波幅度、高度分布、飞行速度和方向等方面分析了气象雷达飞鸟目标的回波特性,进而讨论了杂波抑制、气象信息剔除、飞鸟目标特征提取、机器学习、交叉验证等气象雷达鸟情信息提取技术。在此基础上,介绍了气象雷达组网探鸟在鸟类生态学研究和鸟击防范方面的应用。最后,从探测覆盖范围和气象雷达系统性能2个方面,讨论了在中国建立基于气象雷达组网的全国鸟情预警系统的初步构想。
中图分类号:
陈唯实, 刘佳, 王青斌, 卢贤锋, 张洁, 陈小龙, 黄毅峰. 气象雷达探鸟技术综述[J]. 航空学报, 2023, 44(5): 26781.
Weishi CHEN, Jia LIU, Qingbin WANG, Xianfeng LU, Jie ZHANG, Xiaolong CHEN, Yifeng HUANG. Review on technology of bird detection with weather radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 26781.
1 | 罗刚, 张海洋, 吴春波, 等. 影响航空安全的高风险鸟类在中国境内的分布[J]. 航空发动机, 2020, 46( 5): 40- 48. |
LUO G, ZHANG H Y, WU C B, et al. Distribution of high-risk birds distribution affecting aircraft safety in China[J]. Aeroengine, 2020, 46( 5): 40- 48 (in Chinese). | |
2 | 陈唯实, 黄毅峰, 卢贤锋, 等. 基于气象雷达的鸟类迁徙监视预警[J]. 中国民用航空, 2020, 325: 48- 51 |
CHEN W S, HUANG Y F, LU X F, et al. Surveillance and early warning of bird migration based on weather radar[J]. China Civil Aviation, 2020, 325: 48- 51 (in Chinese) | |
3 | GU Z R, PAN S K, LIN Z Z, et al. Climate-driven flyway changes and memory-based long-distance migration[J]. Nature, 2021, 591( 7849): 259- 264. |
4 | 王昱熙, 谢彦波, Batbayar Nyambayar, 等. 基于卫星追踪探讨黄河流域自然保护区对3种水鸟栖息地的保护现状[J]. 生物多样性, 2020, 28( 12): 1483- 1495. |
WANG Y X, XIE Y B, BATBAYAR N, et al. Discussion of existing protection for three waterbirds’ habitats in the Yellow River Basin nature reserves, based on satellite tracking[J]. Biodiversity Science, 2020, 28( 12): 1483- 1495 (in Chinese). | |
5 | 陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39( 2): 7- 17. |
CHEN W S, LI J. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39( 2): 7- 17 (in Chinese). | |
6 | 陈唯实, 张洁, 卢贤锋. 基于探鸟雷达数据的机场鸟情分析[J]. 民用航空, 2020( 313): 43- 45 |
CHEN W S, ZHANG J, LU X F. Airport bird situation analysis based on avian radar data[J]. China Civil Aviation, 2020( 313): 43- 45 (in Chinese) | |
7 | 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9( 5): 803- 827. |
CHEN X L, CHEN W S, RAO Y H, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9( 5): 803- 827 (in Chinese). | |
8 | STEPANIAN P M, HORTON K G, MELNIKOV V M, et al. Dual-polarization radar products for biological applications[J]. Ecosphere, 2016, 7( 11): 1- 27. |
9 | HUUSKONEN A, SALTIKOFF E, HOLLEMAN I. The operational weather radar network in Europe[J]. Bulletin of the American Meteorological Society, 2014, 95( 6): 897- 907. |
10 | BEASON R C, NOHARA T J, WEBER P. Beware the Boojum: Caveats and strengths of avian radar[J]. Human-Wildlife Interactions, 2013, 7( 1): 16- 46 |
11 | GAUTHREAUX S A Jr, BELSER C G. Displays of bird movements on the WSR-88D: Patterns and quantification[J]. Weather and Forecasting, 1998, 13( 2): 453- 464. |
12 | VAN GASTEREN H, KRIJGSVELD K L, KLAUKE N, et al. Aeroecology meets aviation safety: Early warning systems in Europe and the Middle East prevent collisions between birds and aircraft[J]. Ecography, 2019, 42( 5): 899- 911. |
13 | SHAMOUN-BARANES J, ALVES J A, BAUER S, et al. Continental-scale radar monitoring of the aerial movements of animals[J]. Movement Ecology, 2014, 2: 9. |
14 | BUURMA L S. Long-range surveillance radars as indicators of bird numbers aloft[J]. Israel Journal of Zoology, 1995, 41( 3): 221- 236. |
15 | RUHE W. Bird hazard management in the German Armed Forces [C]∥ 28th IBSC Conference, 2008 |
16 | HOFFMANN F, RITCHIE M, FIORANELLI F, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]∥ 2016 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2016: 1- 6. |
17 | METZ I C, ELLERBROEK J, MÜHLHAUSEN T, et al. Analysis of risk-based operational bird strike prevention[J]. Aerospace, 2021, 8( 2): 32. |
18 | 胡程, 方琳琳, 王锐, 等. 昆虫雷达散射截面积特性分析[J]. 电子与信息学报, 2020, 42( 1): 140- 153. |
HU C, FANG L L, WANG R, et al. Analysis of insect RCS characteristics[J]. Journal of Electronics & Information Technology, 2020, 42( 1): 140- 153 (in Chinese). | |
19 | 安玉鑫, 吴伟, 王毅鸿, 等. 黑龙江南部林区雀形目鸟类春季迁徙时间与气温和北极涛动的联系[J]. 野生动物学报, 2019, 40( 3): 715- 722. |
AN Y X, WU W, WANG Y H, et al. Relationship between spring migration time of passerine birds and temperature and Arctic oscillation in southern forest region of Heilongjiang Province[J]. Chinese Journal of Wildlife, 2019, 40( 3): 715- 722 (in Chinese). | |
20 | GAUTHREAUX S A, BELSER C G. Radar ornithology and biological conservation[J]. The Auk, 2003, 120( 2): 266- 277. |
21 | BRUDERER B. The study of bird migration by RadarPart 1: The technical basis[J]. Naturwissenschaften, 1997, 84( 1): 1- 8. |
22 | VAN BELLE J, SHAMOUN-BARANES J, VAN LOON E, et al. An operational model predicting autumn bird migration intensities for flight safety[J]. Journal of Applied Ecology, 2007, 44( 4): 864- 874. |
23 | DOKTER A M, FARNSWORTH A, FINK D, et al. Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar[J]. Nature Ecology & Evolution, 2018, 2( 10): 1603- 1609. |
24 | DOVIAK R J, BRINGI V, RYZHKOV A, et al. Considerations for polarimetric upgrades to operational WSR-88D radars[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17( 3): 257- 278. |
25 | FANG M, DOVIAK R J, MELNIKOV V. Spectrum width measured by WSR-88D: Error sources and statistics of various weather phenomena[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21( 6): 888- 904. |
26 | FARNSWORTH A, VAN DOREN B M, HOCHACHKA W M, et al. A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA[J]. Ecological Applications: A Publication of the Ecological Society of America, 2016, 26( 3): 752- 770. |
27 | DOKTER A M, LIECHTI F, STARK H, et al. Bird migration flight altitudes studied by a network of operational weather radars[J]. Journal of the Royal Society, Interface, 2011, 8( 54): 30- 43. |
28 | SALTIKOFF E, HAASE G, DELOBBE L, et al. OPERA the radar project[J]. Atmosphere, 2019, 10( 6): 320. |
29 | HOLLEMAN I. Quality control and verification of weather radar wind profiles[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22( 10): 1541- 1550. |
30 | MATTTHEWS S, DUPUY P, SCOVELL R, et al. EUMETNET OPERA radar data center: Providing operational, homogeneous European radar rainfall composites[C]// Proceedings of the Weather Radar and Hydrology, 2012: 9- 14 |
31 | MATTHEWS S, GAUSSIAT N, SCOVELL R, et al. EUMETNET OPERA radar data centre-odyssey-an operational service and future plans[C]∥ Proceedings of the 7th European conference on radar in meteorology and hydrology, 2012: 25- 29. |
32 | GINATI A, COPPOLA D, GAROFALO G, et al. FlySafe: An early warning system to reduce risk of bird strikes[J]. Esa Bulletin-European Space Agency, 2010, 144( 144): 46- 55. |
33 | SCOVELL R, GAUSSIAT N, MITTERMAIER M. Recent improvements to the quality control of radar data for the opera data center[C]∥ Proceedings of the 36th AMS Conference on Radar Meteorology, 2013: 16- 20. |
34 | 张培昌, 杜秉玉, 戴铁丞. 雷达气象学[M]. 北京: 气象出版社, 2001. |
ZHANG P C, DU B Y, DAI T C. Radar meteorology[M]. Beijing: China Meteorological Press, 2001 (in Chinese). | |
35 | 滕玉鹏, 陈洪滨, 马舒庆, 等. 北京S波段天气雷达夜间晴空回波产生原因[J]. 应用气象学报, 2020, 31( 5): 595- 607. |
TENG Y P, CHEN H B, MA S Q, et al. The cause of night clear air echo of S-band weather radar in Beijing[J]. Journal of Applied Meteorological Science, 2020, 31( 5): 595- 607 (in Chinese). | |
36 | 龚江昆. 鸟类目标电磁散射特性和回波检测识别技术研究[D]. 武汉: 武汉大学, 2019. |
GONG J K. Research on electromagnetic scattering characteristics of birds and detection of echoes from birds[D]. Wuhan: Wuhan University, 2019 (in Chinese). | |
37 | DOKTER A M, FELIX L, HOLLEMAN I. Bird detection by operational weather radar: WR 2009-06[R]. De Bilt: Mendeley, 2009 |
38 | 梁淑敏, 王维, 高利平, 等. 鸟类飞行高度与民航机场鸟击防范的关系[J]. 安全与环境学报, 2016( 1): 104- 109. |
LIANG S M, WANG W, GAO L P, et al. Analysis of the relationship between the birds flying height and guard against the bird striking in the civil aviation airport[J]. Journal of Safety and Environment, 2016( 1): 104- 109 (in Chinese). | |
39 | DOKTER A M, DESMET P, SPAAKS J H, et al. BioRad: Biological analysis and visualization of weather radar data[J]. Ecography, 2019, 42( 5): 852- 860. |
40 | NILSSON C, DOKTER A M, SCHMID B, et al. Field validation of radar systems for monitoring bird migration[J]. Journal of Applied Ecology, 2018, 55( 6): 2552- 2564. |
41 | 袁蕾, 付元宾, 于姬, 等. 鸟类迁徙及其研究方法综述[J]. 生物学教学, 2017, 42( 7): 8- 10. |
YUAN L, FU Y B, YU J, et al. Review on bird migration and its research methods [J]. Biology Teaching, 2017, 42( 7): 8- 10 (in Chinese). | |
42 | NILSSON C, BÄCKMAN J, ALERSTAM T. Seasonal modulation of flight speed among nocturnal passerine migrants: Differences between short- and long-distance migrants[J]. Behavioral Ecology and Sociobiology, 2014, 68( 11): 1799- 1807. |
43 | 汪玲, 田凤, 朱岱寅, 等. 一种基于谱极化参数的双极化气象雷达杂波抑制方法[J]. 电子与信息学报, 2021, 43( 3): 555- 563. |
WANG L, TIAN F, ZHU D Y, et al. A clutter suppression method for dual-polarization weather radar exploiting spectral polarimetric parameters[J]. Journal of Electronics & Information Technology, 2021, 43( 3): 555- 563 (in Chinese). | |
44 | BULER J J, DIEHL R H. Quantifying bird density during migratory stopover using weather surveillance radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47( 8): 2741- 2751. |
45 | MIRKOVIC D, STEPANIAN P M, KELLY J F, et al. Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms[J]. Scientific Reports, 2016, 6: 35637. |
46 | CHEN W S. Spatial and temporal features selection for low-altitude target detection[J]. Aerospace Science and Technology, 2015, 40: 171- 180. |
47 | 李丰, 刘黎平, 王红艳, 等. S波段多普勒天气雷达非降水气象回波识别[J]. 应用气象学报, 2012, 23( 2): 147- 158. |
LI F, LIU L P, WANG H Y, et al. Identification of non-precipitation meteorological echoes with Doppler weather radar[J]. Journal of Applied Meteorological Science, 2012, 23( 2): 147- 158 (in Chinese). | |
48 | BRUDERER B. The study of bird migration by RadarPart 1: The technical basis[J]. Naturwissenschaften, 1997, 84( 1): 1- 8. |
49 | GAUTHREAUX S A, BELSER C G, BLARICOM D. Using a network of WSR-88D weather surveillance radars to define patterns of bird migration at large spatial scales[C]∥ Avian Migration, 2003: 335- 346. |
50 | STEPNIAN P M. Radar polarimetry for biological applications[D]. Norman: University of Oklahoma, 2015. |
51 | 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5( 2): 119- 131. |
WANG X S. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5( 2): 119- 131 (in Chinese). | |
52 | MELNIKOV V M, LEE R R, LANGLIEB N J. Resonance effects within S-band in echoes from birds[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9( 3): 413- 416. |
53 | STEPANIAN P M, HORTON K G. Extracting migrant flight orientation profiles using polarimetric radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53( 12): 6518- 6528. |
54 | TORVIK B, OLSEN K E, GRIFFITHS H. Classification of birds and UAVs based on radar polarimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13( 9): 1305- 1309. |
55 | LIN T Y, WINNER K, BERNSTEIN G, et al. M ist N et: Measuring historical bird migration in the US using archived weather radar data and convolutional neural networks[J]. Methods in Ecology and Evolution, 2019, 10( 11): 1908- 1922. |
56 | VAN DOREN B M, HORTON K G. A continental system for forecasting bird migration[J]. Science, 2018, 361( 6407): 1115- 1118. |
57 | CHENG Z Z, GABRIEL S, BHAMBHANI P, et al. Detecting and tracking communal bird roosts in weather radar data[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34( 1): 378- 385. |
58 | WANG X, CAO L, FOX A D, et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl[J]. Nature Communications, 2019, 10: 2187. |
59 | WEISSHAUPT N, DOKTER A M, ARIZAGA J, et al. Effects of a sea barrier on large-scale migration patterns studied by a network of weather radars[J]. Bird Study, 2018, 65( 2): 232- 240. |
60 | NILSSON C, DOKTER A M, VERLINDEN L, et al. Revealing patterns of nocturnal migration using the European weather radar network[J]. Ecography, 2019, 42( 5): 876- 886. |
61 | NING H S, CHEN W S. Bird strike risk evaluation at airports[J]. Aircraft Engineering and Aerospace Technology, 2014, 86( 2): 129- 137. |
62 | 陈唯实, 万健, 李敬. 基于机场探鸟雷达数据的鸟击风险评估[J]. 北京航空航天大学学报, 2013, 39( 11): 1431- 1436. |
CHEN W S, WAN J, LI J. Bird strike risk assessment with airport avian radar data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39( 11): 1431- 1436 (in Chinese). | |
63 | SHAMOUN-BARANES J, NILSSON C, BAUER S, et al. Taking radar aeroecology into the 21st century[J]. Ecography, 2019, 42( 5): 847- 851. |
64 | 许小峰. NEXRAD: 走进“新一代”: 天气雷达探测技术的起步与发展[J]. 气象科技进展, 2020, 10( 6): 2- 7. |
XU X F. NEXRAD: Entering the “new generation”[J]. Advances in Meteorological Science and Technology, 2020, 10( 6): 2- 7 (in Chinese). | |
65 | 熊鹰, 蔡天龙, 雷富民. 迁徙鸟类如何发现其迁移路线? [J]. 科学通报, 2017, 62( 12): 1204- 1213. |
XIONG Y, CAI T L, LEI F M. How do migrating birds find their way? [J]. Chinese Science Bulletin, 2017, 62( 12): 1204- 1213 (in Chinese). |
[1] | 黄建开, 殷加鹏, 安孟昀, 庞晨, 李永祯, 王雪松. 基于极化气象雷达的空飘气球检测方法[J]. 航空学报, 2024, 45(14): 630188-630188. |
[2] | 周运龙, 马毅, 管迎春. 面向航空发动机高性能制造的激光选区熔化技术研究进展[J]. 航空学报, 2024, 45(13): 629508-629508. |
[3] | 马金毅, 王灿, 薛涛, 艾剑良, 董一群. 空战格斗飞行机动数据库建立及应用[J]. 航空学报, 2023, 44(S1): 727538-727538. |
[4] | 何磊, 钱炜祺, 董康生, 易贤, 柴聪聪. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报, 2023, 44(5): 126434-126434. |
[5] | 梁益铭, 李广宁, 徐敏. 基于机器学习的智能控制数值虚拟飞行方法[J]. 航空学报, 2023, 44(17): 128098-81280986. |
[6] | 陈小前, 赵勇, 霍森林, 张泽雨, 都柄晓. 多尺度结构拓扑优化设计方法综述[J]. 航空学报, 2023, 44(15): 528863-528863. |
[7] | 段玉聪, 王学德, 周鑫, 张佩宇, 郭西洋, 成星, 樊军伟. 粉末床激光成形熔池辐射强度信号的机器学习[J]. 航空学报, 2022, 43(9): 425855-425855. |
[8] | 李海泉, 陈小前, 左林玄, 赵卓林. 基于随机森林的飞行载荷代理模型分析方法[J]. 航空学报, 2022, 43(3): 225640-225640. |
[9] | 吴子轩, 张宁, 高凯烨, 彭锐. 基于风险偏好调整的随机森林算法的航班航程油量预测[J]. 航空学报, 2022, 43(2): 224933-224933. |
[10] | 王泽林, 籍日添, 惠心雨, 丁晨, 汪辉, 白俊强. 基于深度学习驱动的L型定向热疏导机理[J]. 航空学报, 2021, 42(6): 124242-124242. |
[11] | 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4): 524686-524686. |
[12] | 何创新, 邓志文, 刘应征. 湍流数据同化技术及应用[J]. 航空学报, 2021, 42(4): 524704-524704. |
[13] | 李霓, 布树辉, 尚柏林, 李永波, 汤志荔, 张伟伟. 飞行器智能设计愿景与关键问题[J]. 航空学报, 2021, 42(4): 524752-524752. |
[14] | 余敏, 罗建军, 王明明. 基于机器学习的空间翻滚目标实时运动预测[J]. 航空学报, 2021, 42(2): 324149-324149. |
[15] | 曹龙超, 周奇, 韩远飞, 宋波, 聂振国, 熊异, 夏凉. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021, 42(10): 524790-524790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学