[1] MIYOSHI C, FUKUI H. Measuring the rebound effects in air transport:The impact of jet fuel prices and air carriers' fuel efficiency improvement of the European airlines[J].Transportation Research Part A:Policy and Practice, 2018, 112:71-84. [2] 宋文滨. 航空经济学及面向价值的飞机设计理论与实践[J].航空学报, 2016, 37(1):81-95. SONG W B. Aero-economics and value-driven aircraft design methodology and applications[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):81-95(in Chinese). [3] 赵志忠, 韩志敏. 基于受油能力的加油机效能分析[J].航空学报, 2016, 37(1):133-143. ZHAO Z Z, HAN Z M. Airtanker effectiveness analysis based on capacity of being refueled[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):133-143(in Chinese). [4] 侯亚丽, 郝铭飞. 基于QAR数据的燃油估算模型对比研究[J].航空计算技术, 2019, 49(1):15-18, 23. HOU Y L, HAO M F. Comparative study of fuel estimation model based on QAR data[J].Aeronautical Computing Technique, 2019, 49(1):15-18, 23(in Chinese). [5] LI M, ZHOU Q. Industrial big data visualization:A case study using flight data recordings to discover the factors affecting the airplane fuel efficiency[C]//2017 IEEE Trustcom/BigDataSE/ICESS. Piscataway:IEEE, 2017:853-858. [6] YANTO J, LIEM R P. Aircraft fuel burn performance study:A data-enhanced modeling approach[J].Transportation Research Part D:Transport and Environment, 2018, 65:574-595. [7] 高凯烨, 王文彬, 刘祥东. 基于随机滤波模型的老年人剩余寿命预测[J].系统工程理论与实践, 2016, 36(11):2924-2932. GAO K Y, WANG W B, LIU X D. Residual life prediction of the elderly based on stochastic filtering model[J].Systems Engineering-Theory & Practice, 2016, 36(11):2924-2932(in Chinese). [8] 叶博嘉, 鲍序, 刘博, 等. 基于机器学习的航空器进近飞行时间预测[J].航空学报, 2020, 41(10):324136. YE B J, BAO X, LIU B, et al. Machine learning for aircraft approach time prediction[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(10):324136(in Chinese). [9] 黄旭星, 李爽, 杨彬, 等. 人工智能在航天器制导与控制中的应用综述[J].航空学报, 2021, 42(4):524201. HUANG X X, LI S, YANG B, et al. Spacecraft guidance and control based on artificial intelligence:Review[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524201(in Chinese). [10] 余敏, 罗建军, 王明明. 基于机器学习的空间翻滚目标实时运动预测[J].航空学报, 2021, 42(2):324149. YU M, LUO J J, WANG M M. Real-time motion prediction of space tumbling targets based on machine learning[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(2):324149(in Chinese). [11] 曹惠玲, 王晓宇. 基于综合相关度的飞机油耗影响参数研究[J].中国民航大学学报, 2016, 34(2):19-22, 51. CAO H L, WANG X Y. Research on aircraft fuel consumption influencial parameters in climbing phase based on comprehensive relevance[J].Journal of Civil Aviation University of China, 2016, 34(2):19-22, 51(in Chinese). [12] 王淑玲, 谢凤, 朱倩倩. 某型飞机燃油消耗随机森林模型的统计诊断[J].黑龙江大学自然科学学报, 2018, 35(1):61-64. WANG S L, XIE F, ZHU Q Q. Statistical diagnosis for random forest model of aircraft fuel consumption data[J].Journal of Natural Science of Heilongjiang University, 2018, 35(1):61-64(in Chinese). [13] 中国民用航空局.大型飞机公共航空运输承运人运行合格审定规则:CCAR-121-R5[S]. 北京:中国民用航空局, 2017. Civil Aviation Administration of China.Large aircraft public air transport carrier operation qualification examination rules:CCAR-121-R5[S].Beijing:Civil Aviation Administration of China, 2017(in Chinese). [14] PANDIAN G R, PECHT M, ZIO E, et al. Data-driven reliability analysis of Boeing 787 Dreamliner[J].Chinese Journal of Aeronautics, 2020, 33(7):1969-1979. [15] ZIO E, FAN M F, ZENG Z G, et al. Application of reliability technologies in civil aviation:Lessons learnt and perspectives[J].Chinese Journal of Aeronautics, 2019, 32(1):143-158. [16] HOSSAIN M M, ALAM S, DELAHAYE D. An evolutionary computational framework for capacity-safety trade-off in an air transportation network[J].Chinese Journal of Aeronautics, 2019, 32(4):999-1010. [17] MERCADIER M, LARDY J P. Credit spread approximation and improvement using random forest regression[J].European Journal of Operational Research, 2019, 277(1):351-365. [18] IMTIAZ S, GHAUCH H, KOUDOURIDIS G P, et al. Random forests resource allocation for 5G systems:Performance and robustness study[C]//2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). Piscataway:IEEE, 2018:326-331. [19] XUE L, LIU Y T, XIONG Y F, et al. A data-driven shale gas production forecasting method based on the multi-objective random forest regression[J].Journal of Petroleum Science and Engineering, 2021, 196:107801. [20] GRAPE S, BRANGER E, ELTER Z, et al. Determination of spent nuclear fuel parameters using modelled signatures from non-destructive assay and random forest regression[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 969:163979. [21] LIN R H, PEI Z X, YE Z Z, et al. Hydrogen fuel cell diagnostics using random forest and enhanced feature selection[J].International Journal of Hydrogen Energy, 2020, 45(17):10523-10535. [22] PAN Z, CHI C Z, ZHANG J K. A model of fuel consumption estimation and abnormality detection based on airplane flight data analysis[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway:IEEE, 2018:1-6. [23] BREIMAN L. Random forests[J].Machine Learning, 2001, 45(1):5-32. [24] CHUNG S H, MA H L, HANSEN M, et al. Data science and analytics in aviation[J].Transportation Research Part E:Logistics and Transportation Review, 2020, 134:101837. [25] WU Z X, ZHANG N, HONG W J, et al. Study on prediction method of flight fuel consumption with machine learning[C]//2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). Piscataway:IEEE, 2020:624-627. [26] CHENG L, CHEN X W, DE VOS J, et al. Applying a random forest method approach to model travel mode choice behavior[J].Travel Behaviour and Society, 2019, 14:1-10. [27] SWAMI A, JAIN R. Scikit-learn:Machine learning in python[J].Journal of Machine Learning Research, 2012, 12(10):2825-2830. |