[1] LIU X S, FU Q G, WANG H, et al. Microstructure, thermophysical property and ablation behavior of high thermal conductivity carbon/carbon composites after heat-treatment[J]. Chinese Journal of Aeronautics, 2020, 33(5):1541-1548. [2] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):222853. LI X J, LI Y B, GUO F, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222853(in Chinese). [3] CHOWDHURY P, SEHITOGLU H, RATEICK R. Damage tolerance of carbon-carbon composites in aerospace application[J]. Carbon, 2018, 126:382-393. [4] WANG P P, LI H J, SUN J, et al. The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating[J]. Surface and Coatings Technology, 2018, 339:124-131. [5] LI L, LI H J, YIN X M, et al. Microstructure evolution of SiC-ZrB2-ZrC coating on C/C composites at 1773 K under different oxygen partial pressures[J]. Journal of Alloys and Compounds, 2016, 687:470-479. [6] MA J, NAN C W. Effective-medium approach to thermal conductivity of heterogeneous materials[J]. Annual Review of Heat Transfer, 2014, 17:303-331. [7] PIETRAK K, WIS'NIEWSKI TS. A review of models for effective thermal conductivity of composite materials[J]. Concentrating Solar Power Technology, 2015, 95(1):14. [8] CHENG P, HSU C T. The effective stagnant thermal conductivity of porous media with periodic structures[J]. Journal of Porous Media, 1999, 2(1):19-38. [9] TONG Z, LIU M, BAO H. A numerical investigation on the heat conduction in high filler loading particulate composites[J]. International Journal of Heat and Mass Transfer, 2016, 100:355-361. [10] WANG M R, PAN N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6):1325-1331. [11] HASSELMAN D P H, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6):508-515. [12] EVERY A G, TZOU Y, HASSELMAN D P H, et al. The effect of particle size on the thermal conductivity of ZnS/diamond composites[J]. Acta Metallurgica et Materialia, 1992, 40(1):123-129. [13] DEMUTH C, MENDES M A A, RAY S, et al. Performance of thermal lattice Boltzmann and finite volume methods for the solution of heat conduction equation in 2D and 3D composite media with inclined and curved interfaces[J]. International Journal of Heat and Mass Transfer, 2014, 77:979-994. [14] WANG M R, HE J H, YU J Y, et al. Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials[J]. International Journal of Thermal Sciences, 2007, 46(9):848-855. [15] WANG H, CHEN L, QU Z G, et al. Modeling of multi-scale transport phenomena in shale gas production-A critical review[J]. Applied Energy, 2020, 262:114575. [16] MISHRA S C, ROY H K. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method[J]. Journal of Computational Physics, 2007, 223(1):89-107. [17] WEI H, BAO H, RUAN X L. Genetic algorithm-driven discovery of unexpected thermal conductivity enhancement by disorder[J]. Nano Energy, 2020, 71:104619. [18] YU W, XIE H Q, XIN S, et al. Thermal properties of polymethyl methacrylate composite containing copper nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4):3121-3125. [19] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese). [20] 高晓光, 李新宇, 岳勐琪, 等. 基于深度学习的地空导弹发射区拟合算法[J]. 航空学报, 2019, 40(9):322858. GAO X G, LI X Y, YUE M Q, et al. Fitting algorithm of ground-to-air missile launching area based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):322858(in Chinese). [21] WEI H, ZHAO S S, RONG Q Y, et al. Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods[J]. International Journal of Heat and Mass Transfer, 2018, 127:908-916. [22] RONG Q Y, WEI H, HUANG X Y, et al. Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods[J]. Composites Science and Technology, 2019, 184:107861. [23] 高峰阁, 迟卫东, 张鸿翔, 等. 国内外MPCF发展概况与展望[J]. 高科技纤维与应用, 2015, 40(5):33-37. GAO F G, CHI W D, ZHANG H X, et al. Development survey and prospect of mesophase pitch-based carbon fiber[J]. Hi-Tech Fiber & Application, 2015, 40(5):33-37(in Chinese). [24] BENZI R, SUCCI S, VERGASSOLA M. The lattice Boltzmann equation:Theory and applications[J]. Physics Reports, 1992, 222(3):145-197. [25] ZHAO K, LI Q, XUAN Y M. Investigation on the three-dimensional multiphase conjugate conduction problem inside porous wick with the lattice Boltzmann method[J]. Science in China Series E:Technological Sciences, 2009, 52(10):2973-2980. [26] WANG J K, WANG M R, LI Z X. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer[J]. International Journal of Thermal Sciences, 2007, 46(3):228-234. [27] D'ORAZIO A, CORCIONE M, CELATA G P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition[J]. International Journal of Thermal Sciences, 2004, 43(6):575-586. [28] ZOU Q S, HE X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6):1591-1598. [29] D'ORAZIO A, SUCCI S, ARRIGHETTI C. Lattice Boltzmann simulation of open flows with heat transfer[J]. Physics of Fluids, 2003, 15(9):2778-2781. [30] WANG M R, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(3):036702. [31] KINGMA D P, BA J. Adam:A method for stochastic optimization[EB/OL]. arXiv preprint:1412.6980, 2015. |