曹龙超1,2, 周奇1, 韩远飞3, 宋波2, 聂振国4, 熊异5, 夏凉6
收稿日期:
2020-09-23
修回日期:
2020-11-07
发布日期:
2020-12-08
通讯作者:
周奇
E-mail:qizhou@hust.edu.cn
基金资助:
CAO Longchao1,2, ZHOU Qi1, HAN Yuanfei3, SONG Bo2, NIE Zhenguo4, XIONG Yi5, XIA Liang6
Received:
2020-09-23
Revised:
2020-11-07
Published:
2020-12-08
Supported by:
摘要: 激光选区熔化(SLM)技术被认为是最有应用前景的增材制造技术之一,已应用于航空航天、医疗器械等领域。然而,如何确保构件质量的可靠性和制造的可重复性是SLM面临的最大挑战,已被认为是限制SLM及其他金属增材制造技术发展和工业应用的最大壁垒。其中,主要原因是SLM过程中会产生难以控制的缺陷。因此,对SLM进行过程监测和实时反馈控制是解决这一挑战的重要研究方向,也已成为学术界和工业界的研究热点之一。通过对近十年该领域的文献调研,综述了金属激光增材制造中常见的冶金缺陷及其产生机理,对金属增材制造过程产生的信号及其监测手段,如声信号、光信号及热信号等进行了详细描述;总结了信号数据的处理方法,包括传统的统计处理方法和新兴的基于机器学习的智能监测方法;随后,综述了金属增材制造过程的质量控制方法,包括非闭环控制和闭环控制,并对全文进行了总结,展望了未来SLM智能监测和控制领域值得深入的研究方向。
中图分类号:
曹龙超, 周奇, 韩远飞, 宋波, 聂振国, 熊异, 夏凉. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021, 42(10): 524790-524790.
CAO Longchao, ZHOU Qi, HAN Yuanfei, SONG Bo, NIE Zhenguo, XIONG Yi, XIA Liang. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524790-524790.
[1] HE W, SHI W X, LI J Q, et al. In-situ monitoring and deformation characterization by optical techniques; part I:Laser-aided direct metal deposition for additive manufacturing[J]. Optics and Lasers in Engineering, 2019, 122:74-88. [2] 赵德陈, 林峰. 金属粉末床熔融工艺在线监测技术综述[J]. 中国机械工程, 2018, 29(17):2100-2110, 2118. ZHAO D C, LIN F. A review of on-line monitoring techniques in metal powder bed fusion processes[J]. China Mechanical Engineering, 2018, 29(17):2100-2110, 2118(in Chinese). [3] TAPIA G, ELWANY A. A review on process monitoring and control in metal-based additive manufacturing[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6):060801. [4] EVERTON S K, HIRSCH M, STRAVROULAKIS P, et al. Review of in situ process monitoring and in situ metrology for metal additive manufacturing[J]. Materials & Design, 2016, 95:431-445. [5] SPEARS T G, GOLD S A. In-process sensing in selective laser melting (SLM) additive manufacturing[J]. Integrating Materials and Manufacturing Innovation, 2016, 5(1):16-40. [6] GRASSO M, COLOSIMO B M. Process defects andin situmonitoring methods in metal powder bed fusion:A review[J]. Measurement Science and Technology, 2017, 28(4):044005. [7] KIM H, LIN Y R, TSENG T L B. A review on quality control in additive manufacturing[J]. Rapid Prototyping Journal, 2018, 24(3):645-669. [8] KYOGOKU H, IKESHOJI T T. A review of metal additive manufacturing technologies:Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process[J]. Mechanical Engineering Reviews, 2020, 7(1):19-182. [9] 吴世彪, 窦文豪, 杨永强, 等. 面向激光选区熔化金属增材制造的检测技术研究进展[J]. 精密成形工程, 2019, 11(4):37-50. WU S B, DOU W H, YANG Y Q, et al. Research progress of inspection technology for addition manufacturing of SLM metal[J]. Journal of Netshape Forming Engineering, 2019, 11(4):37-50(in Chinese). [10] YAP C Y, CHUA C K, DONG Z L, et al. Review of selective laser melting:Materials and applications[J]. Applied Physics Reviews, 2015, 2(4):041101. [11] 魏青松, 宋波, 文世峰. 金属粉床激光增材制造技术[M]. 北京:化学工业出版社, 2019:2-25. WEI Q S, SONG B, WEN S F. Meatl powder bed laser additive manufacturing technology[M]. Beijing:Chemical Industry Press, 2019:2-25(in Chinese). [12] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). [13] HOOPER P A. Melt pool temperature and cooling rates in laser powder bed fusion[J]. Additive Manufacturing, 2018, 22:548-559. [14] GUO M, GU D D, XI L X, et al. Selective laser melting additive manufacturing of pure tungsten:Role of volumetric energy density on densification, microstructure and mechanical properties[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84:105025. [15] MATTHEWS M J, GUSS G, KHAIRALLAH S A, et al. Denudation of metal powder layers in laser powder bed fusion processes[J]. Acta Materialia, 2016, 114:33-42. [16] KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al. Laser powder-bed fusion additive manufacturing:Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108:36-45. [17] ZHANG B, ZIEGERT J, FARAHI F, et al. In-situ surface topography of laser powder bed fusion using fringe projection[J]. Additive Manufacturing, 2016, 12:100-107. [18] CHEN H, WEI Q S, ZHANG Y J, et al. Powder-spreading mechanisms in powder-bed-based additive manufacturing:Experiments and computational modeling[J]. Acta Materialia, 2019, 179:158-171. [19] BARTLETT J L, JARAMA A, JONES J, et al. Prediction of microstructural defects in additive manufacturing from powder bed quality using digital image correlation[J]. Materials Science and Engineering:A, 2020, 794:140002. [20] CRIALES L E, ARISOY Y M, LANE B, et al. Laser powder bed fusion of nickel alloy 625:Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis[J]. International Journal of Machine Tools and Manufacture, 2017, 121:22-36. [21] GUNENTHIRAM V, PEYRE P, SCHNEIDER M, et al. Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J]. Journal of Laser Applications, 2017, 29(2):022303. [22] GUNENTHIRAM V, PEYRE P, SCHNEIDER M, et al. Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process[J]. Journal of Materials Processing Technology, 2018, 251:376-386. [23] ZHANG Y J, HONG G S, YE D S, et al. Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring[J]. Materials & Design, 2018, 156:458-469. [24] ZHANG Y J, FUH J Y H, YE D S, et al. In-situ monitoring of laser-based PBF via off-axis vision and image processing approaches[J]. Additive Manufacturing, 2019, 25:263-274. [25] KHAIRALLAH S A, MARTIN A A, LEE J R I, et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing[J]. Science, 2020, 368(6491):660-665. [26] LIU Y, YANG Y Q, MAI S Z, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J]. Materials & Design, 2015, 87:797-806. [27] WANG D, WU S B, FU F, et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design, 2017, 117:121-130. [28] YOUNG Z A, GUO Q L, PARAB N D, et al. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 2020, 36:101438. [29] SOW M C, DE TERRIS T, CASTELNAU O, et al. Influence of beam diameter on Laser Powder Bed Fusion (L-PBF) process[J]. Additive Manufacturing, 2020, 36:101532. [30] YE D S, HONG G S, ZHANG Y J, et al. Defect detection in selective laser melting technology by acoustic signals with deep belief networks[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5-8):2791-2801. [31] ALKAHARI M R, FURUMOTO T, UEDA T, et al. Consolidation characteristics of ferrous-based metal powder in additive manufacturing[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2014, 8(1):0009. [32] YAN W T, GE W J, QIAN Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134:324-333. [33] 冯一琦, 谢国印, 张璧, 等. 激光功率与底面状态对选区激光熔化球化的影响[J]. 航空学报, 2019, 40(12):423089. FENG Y Q, XIE G Y, ZHANG B, et al. Influence of laser power and surface condition on balling behavior in selective laser melting[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):423089(in Chinese). [34] SCIME L, BEUTH J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 2019, 25:151-165. [35] QIU C L, PANWISAWAS C, WARD M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 2015, 96:72-79. [36] BAUEREIß A, SCHAROWSKY T, KÖRNER C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting[J]. Journal of Materials Processing Technology, 2014, 214(11):2522-2528. [37] KING W E, BARTH H D, CASTILLO V M, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(12):2915-2925. [38] GONG H J, RAFI K, GU H F, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1-4:87-98. [39] KAMATH C, EL-DASHER B, GALLEGOS G F, et al. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at Powers up to 400 W[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(1-4):65-78. [40] LEUNG C L A, MARUSSI S, ATWOOD R C, et al. In-situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J]. Nature Communications, 2018, 9:1355. [41] PANWISAWAS C, QIU C L, SOVANI Y, et al. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting[J]. Scripta Materialia, 2015, 105:14-17. [42] COECK S, BISHT M, PLAS J, et al. Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data[J]. Additive Manufacturing, 2019, 25:347-356. [43] de TERRIS T, ANDREAU O, PEYRE P, et al. Optimization and comparison of porosity rate measurement methods of Selective Laser Melted metallic parts[J]. Additive Manufacturing, 2019, 28:802-813. [44] HOJJATZADEH S M H, PARAB N D, YAN W T, et al. Pore elimination mechanisms during 3D printing of metals[J]. Nature Communications, 2019, 10:3088. [45] MARTIN A A, CALTA N P, KHAIRALLAH S A, et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing[J]. Nature Communications, 2019, 10:1987. [46] SANAEI N, FATEMI A, PHAN N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing[J]. Materials & Design, 2019, 182:108091. [47] HOJJATZADEH S M H, PARAB N D, GUO Q L, et al. Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding[J]. International Journal of Machine Tools and Manufacture, 2020, 153:103555. [48] NING J Q, SIEVERS D E, GARMESTANI H, et al. Analytical modeling of part porosity in metal additive manufacturing[J]. International Journal of Mechanical Sciences, 2020, 172:105428. [49] ZHAO M H, DUAN C H, LUO X P. Metallurgical defect behavior, microstructure evolution, and underlying thermal mechanisms of metallic parts fabricated by selective laser melting additive manufacturing[J]. Journal of Laser Applications, 2020, 32(2):22012. [50] ABD-ELGHANY K, BOURELL D L. Property evaluation of 304L stainless steel fabricated by selective laser melting[J]. Rapid Prototyping Journal, 2012, 18(5):420-428. [51] STRANO G, HAO L, EVERSON R M, et al. Surface roughness analysis, modelling and prediction in selective laser melting[J]. Journal of Materials Processing Technology, 2013, 213(4):589-597. [52] JAMSHIDINIA M, KOVACEVIC R. The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing[J]. Surface Topography:Metrology and Properties, 2015, 3(1):014003. [53] KLESZCZYNSKI S, LADEWIG A, FRIEDBERGER K, et al. Position dependency of surface roughness in parts from laser beam melting systems[C]//26th International Solid Free Form Fabrication (SFF) Symposium, 2015:360-370. [54] FOX J C, MOYLAN S P, LANE B M. Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing[J]. Procedia CIRP, 2016, 45:131-134. [55] FOX J C, MOYLAN S P,LANE B M. Preliminary study toward surface texture as a process signature in laser powder bed fusion additive manufacturing[C]//2016 Summer Topical Meeting:Dimensional Accuracy and Surface Finish in Additive Manufacturing, 2016. [56] HO Y, BRANDON M L, JASON C F, et al. Continuous laser scan strategy for faster build speeds in laser powder bed fusion system[C]//The 28th Annual International Solid Freeform Fabrication Symposium, 2017. [57] MA C P, GUAN Y C, ZHOU W. Laser polishing of additive manufactured Ti alloys[J]. Optics and Lasers in Engineering, 2017, 93:171-177. [58] CAIAZZO F, ALFIERI V, ALIBERTI M V, et al. Influence of building parameters on surface aspect and roughness in additive manufactured metal parts[J]. Key Engineering Materials, 2019, 813:104-109. [59] YEUNG H, LANE B, FOX J. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2019, 30:100844. [60] AKHIL V, RAGHAV G, ARUNACHALAM N, et al. Image data-based surface texture characterization and prediction using machine learning approaches for additive manufacturing[J]. Journal of Computing and Information Science in Engineering, 2020, 20(2):021010. [61] TIAN Y, TOMUS D, ROMETSCH P, et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting[J]. Additive Manufacturing, 2017, 13:103-112. [62] GAJA H, LIOU F. Defects monitoring of laser metal deposition using acoustic emission sensor[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):561-574. [63] HIRSCH M, CATCHPOLE-SMITH S, PATEL R, et al. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2017, 473(2205):20170194. [64] BARUA S, LIOU F, NEWKIRK J, et al. Vision-based defect detection in laser metal deposition process[J]. Rapid Prototyping Journal, 2014, 20(1):77-85. [65] PFLEGER M, ARAMENDI B, et al. Online cracking detection by means of optical techniques in laser-cladding process[J]. Structural Control and Health Monitoring, 2019, 26(3):e2291. [66] GUO C, LI S, SHI S, et al. Effect of processing parameters on surface roughness, porosity and cracking of as-built IN738LC parts fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2020, 285:116788. [67] LEE Y S, KIRKA M M, FERGUSON J, et al. Correlations of cracking with scan strategy and build geometry in electron beam powder bed additive manufacturing[J]. Additive Manufacturing, 2020, 32:101031. [68] OPPRECHT M, GARANDET J P, ROUX G, et al. A solution to the hot cracking problem for aluminium alloys manufactured by laser beam melting[J]. Acta Materialia, 2020, 197:40-53. [69] COLOSIMO B M, GRASSO M. Spatially weighted PCA for monitoring video image data with application to additive manufacturing[J]. Journal of Quality Technology, 2018, 50(4):391-417. [70] DOUELLOU C, BALANDRAUD X, DUC E. Assessment of geometrical defects caused by thermal distortions in laser-beam-melting additive manufacturing:A simulation approach[J]. Rapid Prototyping Journal, 2019, 25(5):939-950. [71] REN K, CHEW Y, FUH J Y H, et al. Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes[J]. Materials & Design, 2019, 162:80-93. [72] LI L, ANAND S. Hatch pattern based inherent strain prediction using neural networks for powder bed fusion additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 56:1344-1352. [73] 张凯, 刘婷婷, 张长东, 等. 基于熔池数据分析的激光选区熔化成形件翘曲变形行为研究[J]. 中国激光, 2015, 42(9):0903007. ZHANG K, LIU T T, ZHANG C D, et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J]. Chinese Journal of Lasers, 2015, 42(9):0903007(in Chinese). [74] NANDWANA P, PLOTKOWSKI A, KANNAN R, et al. Predicting geometric influences in metal additive manufacturing[J]. Materials Today Communications, 2020, 25:101174. [75] SUFIIAROV V, SOKOLOVA V, BORISOV E, et al. Investigation of accuracy, microstructure and properties of additive manufactured lattice structures[J]. Materials Today:Proceedings, 2020, 30:572-577. [76] KOESTER L W, TAHERI H, BIGELOW T A, et al. In-situ acoustic signature monitoring in additive manufacturing processes[C]//AIP Conference Proceedings, 2018. [77] LÖR L, SCHIMANSKY F P, KVN U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology, 2014, 214(9):1852-1860. [78] FATEMI A, MOLAEI R, SHARIFIMEHR S, et al. Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect[J]. International Journal of Fatigue, 2017, 100:347-366. [79] ZHANG B, LIU S Y, SHIN Y C. In-Process monitoring of porosity during laser additive manufacturing process[J]. Additive Manufacturing, 2019, 28:497-505. [80] XIONG Y L, YAO S, ZHAO Z L, et al. A new approach to eliminating enclosed voids in topology optimization for additive manufacturing[J]. Additive Manufacturing, 2020, 32:101006. [81] YÁNEZ A, FIORUCCI M P, CUADRADO A, et al. Surface roughness effects on the fatigue behaviour of gyroid cellular structures obtained by additive manufacturing[J]. International Journal of Fatigue, 2020, 138:105702. [82] KOU S. Solidification and liquation cracking issues in welding[J]. JOM, 2003, 55(6):37-42. [83] VRANCKEN B, GANERIWALA R K, MATTHEWS M J. Analysis of laser-induced microcracking in tungsten under additive manufacturing conditions:Experiment and simulation[J]. Acta Materialia, 2020, 194:464-472. [84] 杨益, 党明珠, 李伟, 等. 激光选区熔化钛铝合金裂纹形成机理及抑制研究[J]. 机械工程学报, 2020, 56(3):181-188. YANG Y, DANG M Z, LI W, et al. Study on cracking mechanism and inhibiting process of TiAl alloys fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(3):181-188(in Chinese). [85] GRASSO M, LAGUZZA V, SEMERARO Q, et al. In-process monitoring of selective laser melting:Spatial detection of defects via image data analysis[J]. Journal of Manufacturing Science and Engineering, 2017, 139(5):051001. [86] GRUBER S, GRUNERT C, RIEDE M, et al. Comparison of dimensional accuracy and tolerances of powder bed based and nozzle based additive manufacturing processes[J]. Journal of Laser Applications, 2020, 32(3):032016. [87] XIE R S, SHI Q Y, CHEN G Q. Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model[J]. Journal of Materials Science & Technology, 2020, 59:83-91. [88] RUPAL B S, ANWER N, SECANELL M, et al. Geometric tolerance and manufacturing assemblability estimation of metal additive manufacturing (AM) processes[J]. Materials & Design, 2020, 194:108842. [89] AVERARDI A, COLA C, ZELTMANN S E, et al. Effect of particle size distribution on the packing of powder beds:A critical discussion relevant to additive manufacturing[J]. Materials Today Communications, 2020, 24:100964. [90] GRASSO M, VALSECCHI G, COLOSIMO B M. Powder bed irregularity and hot-spot detection in electron beam melting by means of in-situ video imaging[J]. Manufacturing Letters, 2020, 24:47-51. [91] PLOTNIKOV Y, HENKEL D, BURDICK J, et al. Infrared-assisted acoustic emission process monitoring for additive manufacturing[C]//AIP Conference Proceedings, 2019. [92] KOESTER L W, TAHERI H, BOND L J, et al. Acoustic monitoring of additive manufacturing for damage and process condition determination[C]//AIP Conference Proceedings, 2019. [93] SHEVCHIK S A, KENEL C, LEINENBACH C, et al. Acoustic emission for in-situ quality monitoring in additive manufacturing using spectral convolutional neural networks[J]. Additive Manufacturing, 2018, 21:598-604. [94] WASMER K, LE-QUANG T, MEYLAN B, et al. In situ quality monitoring in AM using acoustic emission:A reinforcement learning approach[J]. Journal of Materials Engineering and Performance, 2019, 28(2):666-672. [95] WILLIAMS J, DRYBURGH P, CLARE A, et al. Defect detection and monitoring in metal additive manufactured parts through deep learning of spatially resolved acoustic spectroscopy signals[J]. Smart and Sustainable Manufacturing Systems, 2018, 2(1):20180035. [96] KOUPRIANOFF D, LUWES N, NEWBY E, et al. On-line monitoring of laser powder bed fusion by acoustic emission:Acoustic emission for inspection of single tracks under different powder layer thickness[C]//2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech). Piscataway:IEEE Press, 2017:203-207. [97] MATILAINEN V P, PIILI H, SALMINEN A, et al. Preliminary investigation of keyhole phenomena during single layer fabrication in laser additive manufacturing of stainless steel[J]. Physics Procedia, 2015, 78:377-387. [98] YADROITSEV I, KRAKHMALEV P, YADROITSAVA I. Selective laser melting of Ti6Al4V alloy for biomedical applications:Temperature monitoring and microstructural evolution[J]. Journal of Alloys and Compounds, 2014, 583:404-409. [99] OKUNKOVA A, VOLOSOVA M, PERETYAGIN P, et al. Experimental approbation of selective laser melting of powders by the use of non-Gaussian power density distributions[J]. Physics Procedia, 2014, 56:48-57. [100] LANE B, ZHIRNOV I, MEKHONTSEV S, et al. Transient laser energy absorption, co-axial melt pool monitoring, and relationship to melt pool morphology[J]. Additive Manufacturing, 2020, 36:101504. [101] AMINZADEH M, KURFESS T R. Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images[J]. Journal of Intelligent Manufacturing, 2019, 30(6):2505-2523. [102] MONTAZERI M, YAVARI R, RAO P, et al. In-process monitoring of material cross-contamination in laser powder bed fusion[C]//Proceedings of ASME 201813th International Manufacturing Science and Engineering Conference, 2018. [103] NADIPALLI V K, ANDERSEN S A, NIELSEN J S, et al. Considerations for interpreting in-situ photodiode sensor data in pulsed mode laser[C]//Proceedings of the Joint Special Interest Group meeting between euspen and ASPE Advancing Precision in Additive Manufacturing, 2019:66-69. [104] ZHANG K, LIU T T, LIAO W H, et al. Photodiode data collection and processing of molten pool of alumina parts produced through selective laser melting[J]. Optik, 2018, 156:487-497. [105] GÖGELEIN A, LADEWIG A, ZENZINGER G, et al. Process monitoring of additive manufacturing by using optical tomography[C]//Proceedings of the 2018 International Conference on Quantitative InfraRed Thermography, 2018. [106] HU Y N, WU S C, WITHERS P J, et al. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures[J]. Materials & Design, 2020, 192:108708. [107] KRAUSS H, ESCHEY C, ZAEH M F. Thermography for monitoring the selective laser melting process[C]//23rd Annual International Solid Freeform Fabrication Symposium-an Additive Manufacturing Conference, 2012. [108] MOYLAN S, WHITENTON E, LANE B, et al. Infrared thermography for laser-based powder bed fusion additive manufacturing processes[C]//AIP Publishing LLC, 2014. [109] ZHENG L P, ZHANG Q, CAO H Z, et al. Melt pool boundary extraction and its width prediction from infrared images in selective laser melting[J]. Materials & Design, 2019, 183:108110. [110] ZHIRNOV I, PROTASOV C, KOTOBAN D, et al. New approach of true temperature restoration in optical diagnostics using IR-camera[J]. Journal of Thermal Spray Technology, 2017, 26(4):648-660. [111] RODRIGUEZ E, MIRELES J, TERRAZAS C A, et al. Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography[J]. Additive Manufacturing, 2015, 5:31-39. [112] LANE B, MOYLAN S, WHITENTON E, et al. Thermographic measurements of the commercial laser powder bed fusion process at NIST[J]. Rapid Prototyping Journal, 2016, 22(5):778-787. [113] JALALAHMADI B, LIU J, RIOS J, et al. In-process defect monitoring and correction in additive manufacturing of aluminum alloys[C]//Vertical Flight Society's 75th Annual Forum & Technology Display, 2019. [114] 袁景光, 李宇, 刘京南, 等. 选区激光熔化金属成型熔池温度的在线检测[J]. 中国激光, 2020, 47(3):0302008. YUAN J G, LI Y, LIU J N, et al. Online detection of molten pool temperature during metal forming based on selective laser melting[J]. Chinese Journal of Lasers, 2020, 47(3):0302008(in Chinese). [115] RAPLEE J, GOCKEL J, LIST F, et al. Towards process consistency and in situ evaluation of porosity during laser powder bed additive manufacturing[J]. Science and Technology of Welding and Joining, 2020, 25(8):679-689. [116] KLESZCZYNSKI S, ZUR JACOBSMüHLEN J, REINARZ B, et al. Improving process stability of laser beam melting systems[C]//Fraunhofer Direct Digital Manufacturing Conference, 2014. [117] GOBERT C, REUTZEL E W, PETRICH J, et al. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging[J]. Additive Manufacturing, 2018, 21:517-528. [118] ZUR JACOBSMVHLEN J, KLESZCZYNSKI S, WITT G, et al. Detection of elevated regions in surface images from laser beam melting processes[C]//IECON 2015-41 st Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2015:1270-1275. [119] CAGGIANO A, ZHANG J J, ALFIERI V, et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing[J]. CIRP Annals, 2019, 68(1):451-454. [120] 姚永臻, 陈波, 檀财旺, 等. 激光增材制造光致等离子体光谱分析[J]. 应用激光, 2017, 37(3):346-350. YAO Y Z, CHEN B, TAN C W, et al. Spectral analysis of laser induced plasma in laser additive manufacturing[J]. Applied Laser, 2017, 37(3):346-350(in Chinese). [121] DAVIS G, RAJAGOPAL P, BALASUBRAMANIAM K, et al. Laser generation of narrowband lamb waves for in-situ inspection of additively manufactured metal components[C]//AIP Conference Proceedings, 2019. [122] MARSHALL G J, YOUNG W J, THOMPSON S M, et al. Understanding the microstructure formation of Ti-6Al-4V during direct laser deposition via in situ thermal monitoring[J]. JOM, 2016, 68(3):778-790. [123] FURUMOTO T, UEDA T, ALKAHARI M R, et al. Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera[J]. CIRP Annals, 2013, 62(1):223-226. [124] ALBERTS D, SCHWARZE D,WITT G. High speed melt pool & laser power monitoring for selective laser melting (SLM)[C]//9th International Conference on Photonic Technologies LANE, 2016:1-4. [125] GÖKHAN D A, DE GIORGI C, PREVITALI B. Design and implementation of a multisensor coaxial monitoring system with correction strategies for selective laser melting of a maraging steel[J]. Journal of Manufacturing Science and Engineering, 2018, 140(4):041003. [126] MONTAZERI M, RAO P. Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach[J]. Journal of Manufacturing Science and Engineering, 2018, 140(9):091002. [127] LANE B, WHITENTON E, MOYLAN S. Multiple sensor detection of process phenomena in laser powder bed fusion[C]//Thermosense:Thermal Infrared Applications XXXVIII, 2016:986104. [128] SNELL R, TAMMAS-WILLIAMS S, CHECHIK L, et al. Methods for rapid pore classification in metal additive manufacturing[J]. JOM, 2020, 72(1):101-109. [129] de SOUZA B F R, SABBAGHI A, HUANG Q. Automated geometric shape deviation modeling for additive manufacturing systems via Bayesian neural networks[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(2):584-598. [130] SILBERNAGEL C, AREMU A, ASHCROFT I. Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing[J]. Rapid Prototyping Journal, 2019, 26(4):625-637. [131] YUAN B D, GUSS G M, WILSON A C, et al. Machine-learning-based monitoring of laser powder bed fusion[J]. Advanced Materials Technologies, 2018, 3(12):1800136. [132] RAITANEN N, YLANDER P. A data-driven approach based on statistical learning modeling for process monitoring and quality assurance of metal powder additive manufacturing[J]. EOS, 2018, 1000(290):3987102. [133] REN K, CHEW Y, ZHANG Y F, et al. Thermal field prediction for laser scanning paths in laser aided additive manufacturing by physics-based machine learning[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 362:112734. [134] 叶冬森. 选择性激光熔化过程的状态监测方法研究[D]. 合肥:中国科学技术大学, 2018:27-45. YE D S. Study of in-situ monitoring methods in selective laser melting process[D]. Hefei:University of Science and Technology of China, 2018:27-45(in Chinese). [135] YE D S, FUH Y J, ZHANG Y J, et al. Defects recognition in selective laser melting with acoustic signals by SVM based on feature reduction[J]. IOP Conference Series:Materials Science and Engineering, 2018, 436:012020. [136] MAHATO V, OBEIDI M A, BRABAZON D, et al. Detecting voids in 3D printing using melt pool time series data[J]. Journal of Intelligent Manufacturing, 2020:1-8. [137] ZHAN Z X, LI H. Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L[J]. International Journal of Fatigue, 2021, 142:105941. [138] OKARO I A, JAYASINGHE S, SUTCLIFFE C, et al. Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning[J]. Additive Manufacturing, 2019, 27:42-53. [139] LI X, JIA X D, YANG Q B, et al. Quality analysis in metal additive manufacturing with deep learning[J]. Journal of Intelligent Manufacturing, 2020, 31(8):2003-2017. [140] RAZVI S S, FENG S, NARAYANAN A, et al. A review of machine learning applications in additive manufacturing[C]//Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2019 [141] DRUZGALSKI C L, ASHBY A, GUSS G, et al. Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2020, 34:101169. [142] DEVESSE W, DE BAERE D, HINDERDAEL M, et al. Model-based temperature feedback control of laser cladding using high-resolution hyperspectral imaging[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6):2714-2722. [143] PURTONEN T, KALLIOSAARI A, SALMINEN A. Monitoring and adaptive control of laser processes[J]. Physics Procedia, 2014, 56:1218-1231. [144] FLEMING T G, NESTOR S G L, ALLEN T R, et al. Tracking and controlling the morphology evolution of 3D powder-bed fusion in-situ using inline coherent imaging[J]. Additive Manufacturing, 2020, 32:100978. [145] RENKEN V, FREYBERG A, SCHVNEMANN K, et al. In-process closed-loop control for stabilising the melt pool temperature in selective laser melting[J]. Progress in Additive Manufacturing, 2019, 4(4):411-421. [146] HUANG X K, TIAN X Y, ZHONG Q, et al. Real-time process control of powder bed fusion by monitoring dynamic temperature field[J]. Advances in Manufacturing, 2020, 8(3):380-391. [147] VASILESKA E, DEMIR A G, COLOSIMO B M, et al. Layer-wise control of selective laser melting by means of inline melt pool area measurements[J]. Journal of Laser Applications, 2020, 32(2):022057. |
[1] | 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677-529677. |
[2] | 马金毅, 王灿, 薛涛, 艾剑良, 董一群. 空战格斗飞行机动数据库建立及应用[J]. 航空学报, 2023, 44(S1): 727538-727538. |
[3] | 张卫红, 周涵, 李韶英, 朱继宏, 周璐. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428-627428. |
[4] | 林忠钦, 于忠奇, 戴冬华, 樊晓光, 余圣甫, 顾冬冬, 李淑慧, 史玉升. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J]. 航空学报, 2023, 44(9): 627493-627493. |
[5] | 唐论, 余圣甫, 郑博, 史玉升, 陈颖. 圆柱面点阵自生Al2O3铝合金粉芯丝材开发及应用[J]. 航空学报, 2023, 44(9): 626864-626864. |
[6] | 陈唯实, 刘佳, 王青斌, 卢贤锋, 张洁, 陈小龙, 黄毅峰. 气象雷达探鸟技术综述[J]. 航空学报, 2023, 44(5): 26781-026781. |
[7] | 何磊, 钱炜祺, 董康生, 易贤, 柴聪聪. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报, 2023, 44(5): 126434-126434. |
[8] | 顾孟奇, 朱家才, 郭万林, 薛松. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 628299-628299. |
[9] | 梁益铭, 李广宁, 徐敏. 基于机器学习的智能控制数值虚拟飞行方法[J]. 航空学报, 2023, 44(17): 128098-81280986. |
[10] | 陈小前, 赵勇, 霍森林, 张泽雨, 都柄晓. 多尺度结构拓扑优化设计方法综述[J]. 航空学报, 2023, 44(15): 528863-528863. |
[11] | 张志强, 勾青泽, 路学成, 王浩, 曹轶然, 郭志永. 高强铝合金CMT+P电弧增材制造熔滴过渡行为[J]. 航空学报, 2023, 44(13): 427881-427881. |
[12] | 段玉聪, 王学德, 周鑫, 张佩宇, 郭西洋, 成星, 樊军伟. 粉末床激光成形熔池辐射强度信号的机器学习[J]. 航空学报, 2022, 43(9): 425855-425855. |
[13] | 李志强, 陈玮. 高能束流加工技术在航空领域的应用进展[J]. 航空学报, 2022, 43(4): 526882-526882. |
[14] | 李涤尘, 鲁中良, 田小永, 张航, 杨春成, 曹毅, 苗恺. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387-525387. |
[15] | 姚燕生, 周瑞根, 张成林, 梅涛, 吴敏. 增材制造复杂金属构件表面抛光技术[J]. 航空学报, 2022, 43(4): 525202-525202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学