1 |
罗阿妮, 刘贺平, SKELTON R E, 等. 张拉整体基本形体稳定构型理论[J]. 机械工程学报, 2017, 53(23): 62-73.
|
|
LUO A N, LIU H P, SKELTON R E, et al. The theory of basic tensegrity unit stable forming[J]. Journal of Mechanical Engineering, 2017, 53(23): 62-73 (in Chinese).
|
2 |
MALIK P K, GUHA A, SESHU P. Topology identification for super-stable tensegrity structure from a given number of nodes in two dimensional space[J]. Mechanics Research Communications, 2022, 119: 103810.
|
3 |
LIU K, ZEGARD T, PRATAPA P P, et al. Unraveling tensegrity tessellations for metamaterials with tunable stiffness and bandgaps[J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 147-166.
|
4 |
YILDIZ K, LESIEUTRE G A. Sizing and prestress optimization of Class-2 tensegrity structures for space boom applications[J]. Engineering with Computers, 2020, 38(2): 1-14.
|
5 |
KAN Z Y, PENG H J, CHEN B, et al. Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM[J]. Composite Structures, 2018, 187: 241-258.
|
6 |
ZHANG L Y, ZHENG Y, YIN X, et al. A tensegrity-based morphing module for assembling various deployable structures[J]. Mechanism and Machine Theory, 2022, 173: 104870.
|
7 |
曾小飞, 叶继红, 叶冶. 动力松弛法与力密度法在索网结构找形中的比较分析[J]. 空间结构, 2003, 9(4): 55-59.
|
|
ZENG X F, YE J H, YE Y. Comparisons between dynamic-relaxation method and force-density method for form finding of pretensioned cable roofs[J]. Spatial Structures, 2003, 9(4): 55-59 (in Chinese).
|
8 |
LEE S, LEE J. A novel method for topology design of tensegrity structures[J]. Composite Structures, 2016, 152: 11-19.
|
9 |
LU C J, ZHU H M, LI S A. Initial form-finding design of deployable Tensegrity structures with dynamic relaxation method[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(5): 2861-2868.
|
10 |
PELLEGRINO S. Mechanics of kinematically indeterminate structures[D]. Cambridge: University of Cambridge, 1986.
|
11 |
EHARA S, KANNO Y. Topology design of tensegrity structures via mixed integer programming[J]. International Journal of Solids and Structures, 2010, 47(5): 571-579.
|
12 |
KANNO Y. Topology optimization of tensegrity structures under self-weight loads[J]. Journal of the Operations Research Society of Japan, 2012, 55(2): 125-145.
|
13 |
KANNO Y. Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach[J]. Optimization and Engineering, 2013, 14(1): 61-96.
|
14 |
WANG Y F, XU X A, LUO Y Z. Topology-finding of tensegrity structures considering global stability condition[J]. Journal of Structural Engineering, 2020, 146(12): 04020260.
|
15 |
XU X A, WANG Y F, LUO Y Z. General approach for topology-finding of tensegrity structures[J]. Journal of Structural Engineering, 2016, 142(10): 04016061.
|
16 |
CONNELLY R, WHITELEY W. Second-order rigidity and prestress stability for tensegrity frameworks[J]. SIAM Journal on Discrete Mathematics, 1996, 9(3): 453-491.
|
17 |
CONNELLY R. Tensegrity structures: why are they stable?[M]∥THORPE M F, DUXBURY P M. Rigidity Theory and Applications, Boston :Springer, 2002: 47-54.
|
18 |
GUEST S. The stiffness of prestressed frameworks: a unifying approach[J]. International Journal of Solids and Structures, 2006, 43(3-4): 842-854.
|
19 |
张沛. 张拉整体结构形态问题的若干研究与优化分析[D]. 南京: 东南大学, 2017: 59-62.
|
|
ZHANG P. Study on morphology of tensegrity structures using optimization methods[D]. Nanjing: Southeast University, 2017: 59-62 (in Chinese).
|
20 |
罗阿妮, 伍承旭, 刘贺平. 三杆张拉整体的结构刚度分析[J]. 哈尔滨工程大学学报, 2017, 38(9): 1450-1455.
|
|
LUO A N, WU C X, LIU H P. Structural stiffness of three-bar tensegrity[J]. Journal of Harbin Engineering University, 2017, 38(9): 1450-1455 (in Chinese).
|
21 |
CAI J G, ZHOU Y H, FENG J A, et al. Effects of the prestress levels on the stiffness of prismatic and star-shaped tensegrity structures[J]. Mathematics and Mechanics of Solids, 2017, 22(9): 1866-1875.
|
22 |
XU X A, WANG Y F, LUO Y Z, et al. Topology optimization of tensegrity structures considering buckling constraints[J]. Journal of Structural Engineering, 2018, 144(10): 04018173.
|
23 |
SKELTON R E, DE OLIVEIRA M C. Tensegrity systems[M]. New York: Springer, 2009.
|
24 |
ZAWADZKI A, SABOUNI-ZAWADZKA A AL. In search of lightweight deployable tensegrity columns[J]. Applied Sciences, 2020, 10(23): 8676.
|
25 |
MAXWELL J C. L. On the calculation of the equilibrium and stiffness of frames[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1864, 27(182): 294-299.
|
26 |
罗阿妮, 王龙昆, 刘贺平, 等. 张拉整体三棱柱构型和结构稳定性分析[J]. 哈尔滨工业大学学报, 2016, 48(7): 82-87.
|
|
LUO A N, WANG L K, LIU H P, et al. Analysis of configuration and structural stability of 3-bar tensegrity prism[J]. Journal of Harbin Institute of Technology, 2016, 48(7): 82-87 (in Chinese).
|
27 |
张沛, 冯健. 张拉整体结构的稳定性判定及刚度分析[J]. 土木工程学报, 2013, 46(10): 48-57.
|
|
ZHANG P, FENG J. Stability criterion and stiffness analysis of tensegrity structures[J]. China Civil Engineering Journal, 2013, 46(10): 48-57 (in Chinese).
|
28 |
陈志华, 史杰, 刘锡良. 张拉整体三棱柱单元体试验[J]. 天津大学学报, 2004, 37(12): 1053-1058.
|
|
CHEN Z H, SHI J, LIU X L. Experimental study on triangular prism unit of tensegrity[J]. Journal of Tianjin University, 2004, 37(12): 1053-1058 (in Chinese).
|
29 |
陈志华, 史杰, 刘锡良. 张拉整体四棱柱单元体试验[J]. 天津大学学报, 2005, 38(6): 533-537.
|
|
CHEN Z H, SHI J, LIU X L. Experimental study on quadrangular prism unit of tensegrity[J]. Journal of Tianjin University, 2005, 38(6): 533-537 (in Chinese).
|