1 |
U.S. Environmental Protection Agency. Aircraft: Exhaust emission standards[R]. Washington, D.C.: U.S. Environmental Protection Agency, 2016.
|
2 |
KARIM H, NATARAJAN J, NARRA V, et al. Staged combustion system for improved emissions operability and flexibility for 7HA class heavy duty gas turbine engine[C]∥ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017.
|
3 |
RAYLEIGH L. The theory of sound[M]. 2nd edition. London: Macmillan, 1896: 224-234.
|
4 |
HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364.
|
5 |
李磊, 孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术, 2010, 31(6): 710-720.
|
|
LI L, SUN X F. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology, 2010, 31(6): 710-720 (in Chinese).
|
6 |
SCHULZ O. Combustion dynamics in gas turbine sequential combustors[D]. Zurich: ETH Zurich, 2019.
|
7 |
CHOI Y, KIM K T. Influences of axial-fuel-staging combustion dynamics of a lean premixed combustor[C]∥Proceedings of the 29th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2023.
|
8 |
LI Y Z, JIA Y L, JIN M, et al. Experimental investigations on NO x emission and combustion dynamics in an axial fuel staging combustor[J]. Journal of Thermal Science, 2022, 31(1): 198-206.
|
9 |
隋永枫, 张宇明, 臧鹏, 等. 次级燃烧对轴向分级燃烧室燃烧特性影响的试验研究[J]. 上海交通大学学报, 2024, 58(8): 1139-1147.
|
|
SUI Y F, ZHANG Y M, ZANG P, et al. Experimental study of influence of secondary combustion on combustion characteristics of axial staged combustor[J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1139-1147 (in Chinese).
|
10 |
梁恩广, 张辰杰, 余志健, 等. 燃气轮机轴向贫燃分级燃烧技术进展[J]. 动力工程学报, 2024, 44(9): 1328-1339.
|
|
LIANG E G, ZHANG C J, YU Z J, et al. Progress in axial staged lean premixed combustion technology of gas turbines[J]. Journal of Chinese Society of Power Engineering, 2024, 44(9): 1328-1339 (in Chinese).
|
11 |
BLAETTE L, BOETTCHER A, STREB H. Combustion system upgrades for high operation flexibility and low emission: Design, testing and validation of the SGT5-4000F[C]∥ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2020.
|
12 |
GUYOT D, TEA G, APPEL C. Low NO x lean premix reheat combustion in Alstom GT24 gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(5): 051503.
|
13 |
DUPÈRE I D J, DOWLING A P. The use of Helmholtz resonators in a practical combustor[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 268-275.
|
14 |
YANG D, SOGARO F M, MORGANS A S, et al. Optimising the acoustic damping of multiple Helmholtz resonators attached to a thin annular duct[J]. Journal of Sound and Vibration, 2019, 444: 69-84.
|
15 |
ELDREDGE J D, DOWLING A P. The absorption of axial acoustic waves by a perforated liner with bias flow[J]. Journal of Fluid Mechanics, 2003, 485: 307-335.
|
16 |
郭志辉, 李磊, 张澄宇, 等. 关于热声不稳定性现象的一种控制方法[J]. 工程热物理学报, 2008, 29(6): 947-950.
|
|
GUO Z H, LI L, ZHANG C Y, et al. A control method for the suppression of thermoacoustic instability[J]. Journal of Engineering Thermophysics, 2008, 29(6): 947-950 (in Chinese).
|
17 |
孙晓峰, 张光宇, 王晓宇, 等. 航空发动机燃烧不稳定性预测及控制研究进展[J]. 航空学报, 2023, 44(14): 628733.
|
|
SUN X F, ZHANG G Y, WANG X Y, et al. Research progress in aero-engine combustion instability prediction and control[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733 (in Chinese).
|
18 |
ZHANG G Y, WANG X Y, LI L, et al. Effects of perforated liners on controlling combustion instabilities in annular combustors[J]. AIAA Journal, 2020, 58(7): 3100-3114.
|
19 |
ZHANG G Y, ZHANG X X, WANG X Y, et al. Modeling analysis of combustion instability in an annular combustor equipped with circumferentially segmented perforated liner[J]. Journal of Sound and Vibration, 2023, 549: 117573.
|
20 |
QIN L, WANG X Y, ZHANG G Y, et al. Control of azimuthal combustion instability through the injector mounting surface of annular combustors[J]. AIAA Journal, 2023, 61(9): 3795-3809.
|
21 |
QIN L, WANG X Y, ZHANG G Y, et al. Theoretical model of azimuthal combustion instability subject to non-trivial boundary conditions[J]. Chinese Journal of Aeronautics, 2024, 37(9): 113-130.
|
22 |
SUN X, JING X, ZHANG H, et al. Effect of grazing-bias flow interaction on acoustic impedance of perforated plates[J]. Journal of Sound Vibration, 2002, 254(3): 557-573.
|
23 |
JING X D, SUN X F. Experimental investigations of perforated liners with bias flow[J]. The Journal of the Acoustical Society of America, 1999, 106(5): 2436-2441.
|
24 |
JING X D, SUN X F. Effect of plate thickness on impedance of perforated plates with bias flow[J]. AIAA Journal, 2000, 38(9): 1573-1578.
|
25 |
HOWE M S. On the theory of unsteady high Reynolds number flow through a circular aperture[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1979, 366(1725): 205-223.
|
26 |
QIN L, WANG X Y, ZHANG G Y, et al. Suppression of azimuthal combustion instability using perforated liner under symmetry breaking[J]. Journal of Propulsion and Power, 2025, 41(1): 27-39.
|
27 |
GOLDSTEIN M E. Aeroacoustics[M]. New York: McGraw-Hill International Book, 1976: 22-32.
|