| [1] |
邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937.
|
|
DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937 (in Chinese).
|
| [2] |
ZHOU P, CHEN R L, YUAN Y, et al. Aerodynamic interference on trim characteristics of quad-tiltrotor aircraft[J]. Aerospace, 2022, 9(5): 262.
|
| [3] |
王永杰. 交叉式双旋翼直升机飞行特性研究[D]. 南京: 南京航空航天大学, 2021: 7-14.
|
|
WANG Y J. Study on flight characteristics of cross twin-rotor helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 7-14 (in Chinese).
|
| [4] |
张夏阳, 罗彬, 招启军, 等. 倾转四旋翼机多涡系气动干扰非定常特性[J/OL]. 航空动力学报, (2024-09-03)[2024-09-04]. .
|
|
ZHANG X Y, LUO B, ZHAO Q J, et al. Unsteady aerodynamic interference of tilt-quadrotor due to multi-vortex effect[J/OL]. Journal of Aerospace Power, (2024-09-03) [2024-09-04]. (in Chinese).
|
| [5] |
DIAZ P V, JOHNSON W, AHMAD J, et al. The side-by-side urban air taxi concept[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
|
| [6] |
QI H T, XU G H, LU C L, et al. Computational investigation on unsteady loads of high-speed rigid coaxial rotor with high-efficient trim model[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1): 16-30.
|
| [7] |
QI H T, XU G H, LU C L, et al. A study of coaxial rotor aerodynamic interaction mechanism in hover with high-efficient trim model[J]. Aerospace Science and Technology, 2019, 84: 1116-1130.
|
| [8] |
RUDDELL A J. Advancing blade concept (ABC™) development[J]. Journal of the American Helicopter Society, 1977, 22(1): 13-23.
|
| [9] |
RUDDELL A J, MACRINO J A. Advancing blade con-cept (ABC) high speed development[C]∥American Helicopter Society 36th Annual Forum. 1980.
|
| [10] |
聂博文, 王亮权, 黄志银, 等. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848.
|
|
NIE B W, WANG L Q, HUANG Z Y, et al. Flight dynamics modeling and control strategy design of compound high-speed unmanned helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529848 (in Chinese).
|
| [11] |
王梓旭, 李攀, 王冰, 等. 倾转旋翼飞行器运动稳定性变化规律及其影响机理[J/OL]. 航空动力学报, (2024-03-05) [2024-09-04]. .
|
|
WANG Z X, LI P, WANG B, et al. Variation of tilt-rotor aircraft motion stability and its influence mechanism. Journal of Aerospace Power, (2024-03-05) [2024-09-04]. (in Chinese).
|
| [12] |
王梓旭, 李攀, 鲁可, 等. 共轴刚性旋翼高速直升机配平策略优化设计[J]. 航空学报, 2024, 45(9): 529069.
|
|
WANG Z X, LI P, LU K, et al. Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529069 (in Chinese).
|
| [13] |
PARK S, IM B, LEE D, et al. Aerodynamic interference analysis for a nonoverlapping multirotor UAV based on dynamic vortex tube[J]. Journal of the American Helicopter Society, 2023, 68(4): 42010-42030.
|
| [14] |
袁野, 陈仁良, 李攀. 基于涡环尾迹模型的共轴刚性旋翼直升机飞行动力学建模[J]. 航空学报, 2018, 39(3): 121564.
|
|
YUAN Y, CHEN R L, LI P. Flight dynamic modelling for coaxial rigid rotor helicopter using vortex-ring wake model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121564 (in Chinese).
|
| [15] |
赵珅宁, 李攀, 张亚飞, 等. 一种新的旋翼动态尾迹模型研究[J]. 南京航空航天大学学报, 2016, 48(2): 212-217.
|
|
ZHAO S N, LI P, ZHANG Y F, et al. Study on new rotor dynamic wake model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 212-217 (in Chinese).
|
| [16] |
SINGH P, FRIEDMANN P P. Application of vortex methods to coaxial rotor wake and load calculations[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
|
| [17] |
ZHAO J G, HE C J. A finite state dynamic wake model enhanced with vortex particle method–derived modeling parameters for coaxial rotor simulation and analysis[J]. Journal of the American Helicopter Society, 2016, 61(2): 1-9.
|
| [18] |
KONG Y B, PRASAD J V R, SANKAR L N, et al. Finite state inflow flow model for coaxial rotor configuration[J]. Journal of the American Helicopter Society, 2020, 65(3): 1-11.
|
| [19] |
GUNER F, PRASAD J V R, PETERS D A. An approximate finite state dynamic wake model for predictions of inflow below the rotor[J]. Journal of the American Helicopter Society, 2021, 66(3): 1-10.
|
| [20] |
王冶平, 吉洪蕾, 周攀, 等. 基于涡管模型的倾转四旋翼气动干扰快速分析[J]. 航空学报, 2025, 46(2): 130705.
|
|
WANG Y P, JI H L, ZHOU P, et al. Fast analysis of aerodynamic interference for quad-tiltrotor based on vortex tube model[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130705 (in Chinese).
|
| [21] |
VATISTAS G H. New model for intense self-similar vortices[J]. Journal of Propulsion and Power, 1998, 14(4): 462-469.
|
| [22] |
VATISTAS G H, KOZEL V, MIH W C. A simpler model for concentrated vortices[J]. Experiments in Fluids, 1991, 11(1): 73-76.
|
| [23] |
PETERS D A, HAQUANG N. Technical note: Dynamic inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68.
|
| [24] |
陈仁良, 李攀, 吴伟, 等. 直升机飞行动力学数学建模问题[J]. 航空学报, 2017, 38(7): 520915.
|
|
CHEN R L, LI P, WU W, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520915 (in Chinese).
|
| [25] |
齐浩然, 齐晓慧. 风扰下的四旋翼无人机LADRC控制律设计[J]. 飞行力学, 2018, 36(2): 47-51.
|
|
QI H R, QI X H. Research on quadrotor UAV based on linear active disturbance rejection control technique under wind-disturbance[J]. Flight Dynamics, 2018, 36(2): 47-51 (in Chinese).
|
| [26] |
JOHNSON W, SILVA C. NASA concept vehicles and the engineering of advanced air mobility aircraft[J]. The Aeronautical Journal, 2022, 126(1295): 59-91.
|
| [27] |
BOSCHITSCH A, QUACKENBUSH T, WACHSPRESS D. First-principles free-vortex wake analysis for helicopters and tiltrotors[C]∥59th Annual Forum Proceedings; Phoenix, Arizona. 2003, 59(2): 1763-1786.
|
| [28] |
JOHNSON W. Technology drivers in the development of CAMRAD II[C]∥American Helicopter Society Aeromechanics Specialists Conference; San Francisco, California. 1994.
|
| [29] |
MALPICA C A. Handling qualities analysis of blade pitch and rotor speed controlled eVTOL quadrotor concepts for urban air mobility[C]∥VFS International Powered Lift Conference; San Jose, CA. 2020: 118-132.
|