收稿日期:
2024-02-18
修回日期:
2024-03-26
接受日期:
2024-04-02
出版日期:
2024-04-12
发布日期:
2024-04-10
通讯作者:
赵瑞
E-mail:zr8800@126.com
基金资助:
Dingjin ZHANG, Juanmian LEI, Rui ZHAO()
Received:
2024-02-18
Revised:
2024-03-26
Accepted:
2024-04-02
Online:
2024-04-12
Published:
2024-04-10
Contact:
Rui ZHAO
E-mail:zr8800@126.com
Supported by:
摘要:
外界扰动进入边界层的感受性过程对转捩位置预测十分关键。结合直接数值模拟和线性稳定性分析方法,在马赫数为6的高超声速条件下研究了壁温对自由流高斯扰动激发裙锥边界层内扰动的感受性的影响。结果表明,自由流高斯扰动穿过裙锥头部激波后激发出快声波、熵波,其中快声波的幅值最大,并且快声波幅值随着壁温升高而增大。之后快声波先激发出裙锥边界层内快模态,进而通过模态转换机制激发出Mack第二模态。降低壁温会使第一模态趋于稳定,但会激发Mack第二模态。最后,从直接数值模拟结果中通过傅里叶变换获取了感受性系数随壁温变化的规律,结果表明感受性系数随壁温的升高而增大。
中图分类号:
张定金, 雷娟棉, 赵瑞. 壁温对高超声速裙锥边界层感受性的影响规律[J]. 航空学报, 2024, 45(24): 130290.
Dingjin ZHANG, Juanmian LEI, Rui ZHAO. Influence of wall temperature on receptivity of hypersonic flare cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 130290.
1 | ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 527-561. |
2 | 陈猛, 刘汝盟, 王立峰, 等. 国家自然科学基金新增代码 “航空航天力学”内涵及重要研究领域[J].航空学报, 2024, 45(2): 129947. |
CHEN M, LIU R M, WANG L F, et al. Connotation and key research areas of new application code “Aerospace Mechanics” of the National Natural Science Foundation of China[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 129947 (in Chinese). | |
3 | 王宇天, 刘建新, 王晓坤, 等. 多孔壁面对高速边界层最优增长条带二次失稳的影响规律[J]. 航空学报, 2023, 44(22): 128519. |
WANG Y T, LIU J X, WANG X K, et al. Effects of porous wall on secondary instability of optimal growth streaks in high speed boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128519 (in Chinese). | |
4 | 周恒, 苏彩虹, 张永明. 超声速/高超声速边界层的转捩机理及预测[M]. 北京: 科学出版社, 2015. |
ZHOU H, SU C H, ZHANG Y M. Transition mechanism and prediction of supersonic/hypersonic boundary layer[M]. Beijing: Science Press, 2015 (in Chinese). | |
5 | 孔维萱, 张辉, 阎超. 适用于高超声速边界层的转捩准则预测方法[J]. 导弹与航天运载技术, 2013(5): 54-58. |
KONG W X, ZHANG H, YAN C. Transition criterion prediction method for hypersonic boundary layer[J]. Missiles and Space Vehicles, 2013(5): 54-58 (in Chinese). | |
6 | 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4): 1092-1102. |
ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1092-1102 (in Chinese). | |
7 | 符松, 王亮. 湍流转捩模式研究进展[J]. 力学进展, 2007, 37(3): 409-416. |
FU S, WANG L. Progress in turbulence/transition modelling[J]. Advances in Mechanics, 2007, 37(3): 409-416 (in Chinese). | |
8 | 张雯, 刘沛清, 郭昊, 等. 湍流转捩工程预报方法研究进展综述[J]. 实验流体力学, 2014, 28(6): 1-12, 38. |
ZHANG W, LIU P Q, GUO H, et al. Review of transition prediction methods[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6): 1-12, 38 (in Chinese). | |
9 | 刘清扬,雷娟棉,刘周,等. 适用于可压缩流动的γ-Reθt -fRe 转捩模型[J]. 航空学报, 2022, 43(8): 125794. |
LIU Q Y, LEI J M, LIU Z, et al. γ-Reθt -fRe transition model for compressible flow[J]. 2022, 43(8): 125794 (in Chinese). | |
10 | 苏彩虹. 高超声速边界层转捩预测中的关键科学问题: 感受性、扰动演化及转捩判据研究进展[J]. 空气动力学学报, 2020, 38(2): 355-367. |
SU C H. Progress in key scientific problems of hypersonic bounary-layer transition prediction: receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica, 2020, 38(2): 355-367 (in Chinese). | |
11 | 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357-372. |
LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372 (in Chinese). | |
12 | FEDOROV A V, KHOKHLOV A P. Receptivity of hypersonic boundary layer to wall disturbances[J]. Theoretical and Computational Fluid Dynamics, 2002, 15(4): 231-254. |
13 | 李学良, 李创创, 苏伟, 等. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627. |
LI X L, LI C C, SU W, et al. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627 (in Chinese). | |
14 | 杨鹏, 唐志共, 陈坚强, 等. 高超声速有攻角锥飞行工况下迎风面波包的演化[J]. 航空学报, 2021, 42(S1): 726367. |
YANG P, TANG Z G, CHENG J Q, et al. Temporal evolution of wavepackets on the windward side of an inclined hypersonic cone under a flight condition[J]. Acta Aeronautica et Astronautica Sinica. 2021, 42(S1): 726367 (in Chinese). | |
15 | MA Y B, ZHONG X L. Receptivity of supersonic boundary layer over a flat plate[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: 788. |
16 | FEDOROV A V. Receptivity of a high-speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics, 2003, 491: 101-129. |
17 | MASLOV A A, SHIPLYUK A N, SIDORENKO A A, et al. Leading-edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 2001, 426(1): 73-94. |
18 | KARA K, BALAKUMAR P, KANDIL O. Effects of wall cooling on hypersonic boundary layer receptivity over a cone[C]∥ 38th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2008: 3734. |
19 | BALAKUMAR P. Receptivity of hypersonic boundary layers to acoustic and vortical disturbances (invited)[C]∥45th AIAA Fluid Dynamics Conference. Reston: AIAA, 2015: 2473. |
20 | DUAN L, CHOUDHARI M M, CHOU A, et al. Characterization of freestream disturbances in conventional hypersonic wind tunnels[J]. Journal of Spacecraft and Rockets, 2019, 56(2): 357-368. |
21 | BALAKUMAR P, CHOU A. Transition prediction in hypersonic boundary layers using receptivity and freestream spectra[J]. AIAA Journal American Institute of Aeronautics and Astronautics, 2018, 56(1): 193-208. |
22 | ZHONG X L. Effect of nose bluntness on hypersonic boundary layer receptivity over a blunt cone[C]∥ 35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005: 5022. |
23 | WHEATON B, JULIANO T, BERRIDGE D, et al. Instability and transition measurements in the Mach-6 quiet tunnel[C]∥39th AIAA Fluid Dynamics Conference. Reston: AIAA, 2009: 3559. |
24 | CHOU A. Characterization of laser-generated perturbations and instability measurements on a flared cone[D]. West Lafayette: Purdue University, 2010: 3-4. |
25 | CHOU A, WHEATON B, WARD C, et al. Instability and transition research in a Mach-6 quiet tunnel[C]∥ 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 283. |
26 | HUANG Y, ZHONG X. Numerical study of hypersonic boundary-layer receptivity and stability with freestream hotspot perturbations[J]. American Institute of Aeronautics & Astronautics, 2016, 52(12):2652-2672. |
27 | HEITMANN D, RADESPIEL R. Simulation of the interaction of a laser generated shock wave with a hypersonic conical boundary layer[C]∥41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011: 3875. |
28 | 江贤洋, 李存标. 高超声速边界层感受性研究综述[J]. 实验流体力学, 2017, 31(2): 1-11. |
JIANG X Y, LI C B. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 1-11 (in Chinese). | |
29 | KARA K, BALAKUMAR P, KANDIL O. Receptivity of hypersonic boundary layers due to acoustic disturbances over blunt cone[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 945. |
30 | 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022, 43(10):527408. |
SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527408 (in Chinese). | |
31 | 万兵兵. 考虑熵层高超声速钝头体边界层的感受性问题研究[D]. 天津: 天津大学, 2018. |
WAN B B. Study on sensitivity of hypersonic blunt body boundary layer considering entropy layer[D]. Tianjin: Tianjin University, 2018 (in Chinese). | |
32 | HUANG Y, ZHONG X. Numerical study of freestream hot-spot perturbation on boundary-layer receptivity for blunt compression-cones in Mach-6 flow[C]∥41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011: 3078. |
33 | FEDOROV A, SHIPLYUK A, MASLOV A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2015, 769: 99-728. |
34 | 刘智勇, 禹旻, 杨武兵. 温度对高速平板边界层转捩雷诺数的影响[J]. 空气动力学学报, 2020, 38(2): 308-315. |
LIU Z Y, YU M, YANG W B. Effect of temperature on the transitional Reynolds number of high-speed planar boundary layer[J]. Acta Aerodynamica Sinica. 2020, 38(2): 308-315 (in Chinese). | |
35 | 梁贤. 高超声速钝锥边界层稳定性特征[D]. 上海: 上海大学, 2010. |
LIANG X. Stability characteristics of hypersonic blunt cone boundary layer[D]. Shanghai: Shanghai University, 2010 (in Chinese). | |
36 | SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight: The role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72: 17-29. |
37 | MARINEAU E C. Prediction methodology for second-mode-dominated boundary-layer transition in wind tunnels[J]. AIAA Journal, 2016, 55(2): 484-499. |
[1] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[2] | 傅亚陆, 袁先旭, 刘朋欣, 余明. 可压缩壁湍流热力学量统计特性分析[J]. 航空学报, 2023, 44(9): 127217-127217. |
[3] | 张阳, 罗佳奇, 曾先. 基于改进虚拟单元浸没边界法的椭圆气动噪声问题[J]. 航空学报, 2023, 44(19): 128418-128418. |
[4] | 李峻洋, 刘朋欣, 余明, 孙东, 董思卫, 袁先旭. 高焓湍流边界层黏性耗散对壁面热流的影响[J]. 航空学报, 2023, 44(15): 528963-528963. |
[5] | 刘晓东, 刘朋欣, 李辰, 孙东, 袁先旭. 高焓激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2023, 44(13): 127832-127832. |
[6] | 吴奕铭, 邱思逸, 向阳, 刘洪. 孤立翼尖涡模态演化规律的实验研究[J]. 航空学报, 2023, 44(11): 127658-127658. |
[7] | 李强, 万兵兵, 杨凯, 朱涛. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报, 2022, 43(2): 124956-124956. |
[8] | 沈鹏飞, 刘朋欣, 孙东, 袁先旭. 马赫6柱-裙构型激波/湍流边界层干扰摩阻统计特性[J]. 航空学报, 2022, 43(1): 626005-626005. |
[9] | 段俊亦, 童福林, 李新亮, 刘洪伟. 压缩-膨胀湍流边界层平均摩阻分解[J]. 航空学报, 2022, 43(1): 625915-625915. |
[10] | 刘朋欣, 袁先旭, 孙东, 傅亚陆, 李辰. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2022, 43(1): 124877-124877. |
[11] | 刘朋欣, 袁先旭, 梁飞, 李辰, 孙东. 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报, 2021, 42(S1): 726338-726338. |
[12] | 李青, 涂国华, 余钊圣, 林昭武, 李婷婷, 袁先旭. 惯性颗粒在非均匀加速流中的输运问题[J]. 航空学报, 2021, 42(S1): 726390-726390. |
[13] | 孙东, 刘朋欣, 沈鹏飞, 童福林, 郭启龙. 马赫数6柱-裙激波/边界层干扰直接模拟[J]. 航空学报, 2021, 42(12): 124681-124681. |
[14] | 程泽鹏, 邱思逸, 向阳, 邵纯, 张淼, 刘洪. 基于全局线性稳定性分析的翼尖双涡不稳定特征演化机理[J]. 航空学报, 2020, 41(9): 123751-123751. |
[15] | 童福林, 周桂宇, 孙东, 李新亮. 膨胀效应对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(9): 123731-123731. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学