1 |
彭冬亮, 文成林, 薛安克. 多传感器多源信息融合理论及应用[M]. 北京: 科学出版社, 2010.
|
|
PENG D L, WEN C L, XUE A K. Theory and application of multi-sensor and multi-source information fusion[M]. Beijing: Science Press, 2010 (in Chinese).
|
2 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[DB/OL]. arXiv preprint: 1412.7062, 2014.
|
3 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
|
4 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[DB/OL]. arXiv preprint: 1706.05587, 2017.
|
5 |
CORTINHAL T, TZELEPIS G, AKSOY E E. SalsaNext: Fast, uncertainty-aware semantic segmentation of LiDAR point clouds for autonomous driving[DB/OL]. arXiv preprint: 2003.03653, 2020.
|
6 |
AKSOY E E, BACI S, CAVDAR S. SalsaNet: Fast road and vehicle segmentation in LiDAR point clouds for autonomous driving[C]∥ 2020 IEEE Intelligent Vehicles Symposium (IV). Piscataway: IEEE Press, 2021: 926-932.
|
7 |
VAN GANSBEKE W, NEVEN D, DE BRABANDERE B, et al. Sparse and noisy LiDAR completion with RGB guidance and uncertainty[C]∥ 2019 16th International Conference on Machine Vision Applications (MVA). Piscataway: IEEE Press, 2019: 1-6.
|
8 |
MEYER G P, CHARLAND J, HEGDE D, et al. Sensor fusion for joint 3D object detection and semantic segmentation[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2020: 1230-1237.
|
9 |
CORTINHAL T, KURNAZ F, AKSOY E E. Semantics-aware multi-modal domain translation: From LiDAR point clouds to panoramic color images[C]∥ 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 3032-3041.
|
10 |
RUDER S. An overview of gradient descent optimization algorithms[DB/OL]. arXiv preprint: 1609.04747, 2016.
|
11 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint: 1412.6980, 2014.
|
12 |
LUO L C, XIONG Y H, LIU Y, et al. Adaptive gradient methods with dynamic bound of learning rate[DB/OL]. arXiv preprint:1902.09843, 2019.
|
13 |
DING J B, REN X C, LUO R X, et al. An adaptive and momental bound method for stochastic learning[DB/OL]. arXiv preprint:1910.12249, 2019.
|
14 |
JADON S. A survey of loss functions for semantic segmentation[C]∥ 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Piscataway: IEEE Press, 2020: 1-7.
|
15 |
XIE S N, TU Z W. Holistically-nested edge detection[C]∥ 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2016: 1395-1403.
|
16 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2999-3007.
|
17 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
|
18 |
BERMAN M, TRIKI A R, BLASCHKO M B. The lovasz-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4413-4421.
|
19 |
ISLAM M A, ROCHAN M, BRUCE N D B, et al. Gated feedback refinement network for dense image labeling[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 4877-4885.
|
20 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint: 2004.10934, 2020.
|
21 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520.
|
22 |
BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 9296-9306.
|
23 |
ALONSO I, RIAZUELO L, MONTESANO L, et al. 3D-MiniNet: Learning a 2D representation from point clouds for fast and efficient 3D LIDAR semantic segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5432-5439.
|
24 |
WANG S, ZHU J K, ZHANG R X. Meta-RangeSeg: LiDAR sequence semantic segmentation using multiple feature aggregation[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9739-9746.
|
25 |
MILIOTO A, VIZZO I, BEHLEY J, et al. RangeNet: Fast and accurate LiDAR semantic segmentation[C]∥ 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 4213-4220.
|
26 |
ZHAO Y H, WANG J, LI X L, et al. Number-adaptive prototype learning for 3D point cloud semantic segmentation[C]∥ European Conference on Computer Vision. Cham: Springer, 2023: 695-703.
|
27 |
XU C F, WU B C, WANG Z N, et al. SqueezeSegV3: Spatially-adaptive convolution for efficient point-cloud segmentation[C]∥ European Conference on Computer Vision. Cham: Springer, 2020: 1-19.
|
28 |
WANG J L, SUN B, LU Y. MVPNet: Multi-view point regression networks for 3D object reconstruction from A single image[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8949-8956.
|
29 |
KOCHANOV D, NEJADASL F K, BOOIJ O. KPRNet: Improving projection-based LiDAR semantic segmentation[DB/OL]. arXiv preprint: 2007.12668, 2020.
|
30 |
GENOVA K, YIN X Q, KUNDU A, et al. Learning 3D semantic segmentation with only 2D image supervision[C]∥ 2021 International Conference on 3D Vision (3DV). Piscataway: IEEE Press, 2022: 361-372.
|