1 |
刘祥, 李天雄, 李林, 等. 入水参数对“水漂式”航行体跨介质运动影响数值仿真分析[J]. 宇航总体技术, 2020, 4(3): 62-70.
|
|
LIU X, LI T X, LI L, et al. Analysis of influence of water entry parameters on cross-medium movement of “water drift” aerial-aquatic vehicle[J]. Astronautical Systems Engineering Technology, 2020, 4(3): 62-70 (in Chinese).
|
2 |
陈国明, 胡俊华, 刘安, 等. 入射条件对射弹入水跳弹行为的影响研究[J]. 中北大学学报(自然科学版), 2019, 40(5): 400-406.
|
|
CHEN G M, HU J H, LIU A, et al. Research on the influence of incident conditions on ricochet behavior during water-entry process[J]. Journal of North University of China (Natural Science Edition), 2019, 40(5): 400-406 (in Chinese).
|
3 |
JOHNSON W. Ricochet of non-spinning projectiles, mainly from water, Part I: Some historical contributions[J]. International Journal of Impact Engineering, 1998, 21(1/2): 15-24.
|
4 |
JOHNSON W. The ricochet of spinning and non-spinning spherical projectiles, mainly from water, Part II: An outline of theory and warlike applications[J]. International Journal of Impact Engineering, 1998, 21(1/2): 25-34.
|
5 |
田北晨, 刘涛涛, 吴钦, 等. 跨介质飞行器触水滑跳运动特性数值模拟[J]. 兵工学报, 2022, 43(3): 586-598.
|
|
TIAN B C, LIU T T, WU Q, et al. Numerical simulation on kinematic characteristics of trans-media aircraft during water-skipping[J]. Acta Armamentarii, 2022, 43(3): 586-598 (in Chinese).
|
6 |
CLANET C, HERSEN F, BOCQUET L. Secrets of successful stone-skipping[J]. Nature, 2004, 427(6969): 29.
|
7 |
ROSELLINI L, HERSEN F, CLANET C, et al. Skipping stones[J]. Journal of Fluid Mechanics, 2005, 543: 137-146.
|
8 |
LYU X J, YUN H L, WEI Z Y. Experimental study of a sphere bouncing on the water[J]. Journal of Marine Science and Application, 2021, 20(4): 714-722.
|
9 |
TSAI H W, WU W F, LAI C L. An experimental study of non-spinning stone-skipping process[J]. Experimental Thermal and Fluid Science, 2021, 123: 110319.
|
10 |
NAGAHIRO S I, HAYAKAWA Y. Theoretical and numerical approach to “magic angle” of stone skipping[J]. Physical Review Letters, 2005, 94(17): 174501.
|
11 |
BOCQUET L. The physics of stone skipping[J]. American Journal of Physics, 2003, 71(2): 150-155.
|
12 |
赵坤. 水漂动力学建模与仿真[D]. 哈尔滨: 哈尔滨工业大学, 2014: 1-67.
|
|
ZHAO K. Dynamics modeling and simulation of hydroplaning[D]. Harbin: Harbin Institute of Technology, 2014: 1-67 (in Chinese).
|
13 |
TANG J, ZHAO K, CHEN H T, et al. Trajectory and attitude study of a skipping stone[J]. Physics of Fluids, 2021, 33(4): 043316.
|
14 |
付晓琴, 李阳辉, 卢昱锦, 等. 二维平板水漂运动数值模拟[J]. 航空学报, 2021, 42(6): 124351.
|
|
FU X Q, LI Y H, LU Y J, et al. Numerical simulation of two-dimensional plate skipping[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124351 (in Chinese).
|
15 |
LI C H, WANG C, WEI Y J, et al. Three-dimensional numerical simulation of cavity dynamics of a stone with different spinning velocities[J]. International Journal of Multiphase Flow, 2020, 129: 103339.
|
16 |
LI C H, WANG C, WEI Y J, et al. Hydrodynamic force and attitude angle characteristics of a spinning stone impacting a free surface[J]. Physics of Fluids, 2021, 33(12): 123309.
|
17 |
LI C H, WANG C, WEI Y J, et al. Numerical investigation on the cavity dynamics and deviation characteristics of skipping stones[J]. Journal of Fluids and Structures, 2021, 104: 103301.
|
18 |
闫蕊. 基于SPH方法的结构物入水若干问题研究[D]. 西安: 西北工业大学, 2016: 66-67.
|
|
YAN R. Research on some problems in structure impact with water using SPH method[D]. Xi’an: Northwestern Polytechnical University, 2016: 66-67 (in Chinese).
|
19 |
YAN R, MONAGHAN J J. SPH simulation of skipping stones[J]. European Journal of Mechanics–B/Fluids, 2017, 61: 61-71.
|
20 |
邬明. LS-DYNA的ALE方法在圆盘击水滑跳中的应用[J]. 科学技术与工程, 2011, 11(33): 8247-8251.
|
|
WU M. Numerical simulation research on bounce of circular disks base on the ALE of LS-DYNA[J]. Science Technology and Engineering, 2011, 11(33): 8247-8251 (in Chinese).
|
21 |
陈诗伟. 基于ANSYS/LS-DYNA的圆盘击水弹跳研究[J]. 舰船电子工程, 2013, 33(1): 122-124.
|
|
CHEN S W. Research on the skipping disk based on the ALE method in ANSYS/LS-DYNA[J]. Ship Electronic Engineering, 2013, 33(1): 122-124 (in Chinese).
|
22 |
COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2003, 191(2): 448-475.
|
23 |
赵连恩, 韩端锋. 高性能船舶水动力原理与设计[M]. 修订版. 哈尔滨: 哈尔滨工程大学出版社, 2007: 124-125.
|
|
ZHAO L E, HAN D F. Hydrodynamic principle and design of high performance ship[M]. Harbin: Harbin Engineering University Press, 2007: 124-125 (in Chinese).
|
24 |
耿玺, 史志伟. 面向过失速机动的风洞动态试验相似准则探讨[J]. 实验流体力学, 2011, 25(3): 41-45.
|
|
GENG X, SHI Z W. Similarity criterion of the wind tunnel test for the post-stall maneuver[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 41-45 (in Chinese).
|
25 |
王建东, 庄佳园, 罗靖, 等. 滑行艇参数化建模方法[J]. 华中科技大学学报(自然科学版), 2020, 48(12): 83-88.
|
|
WANG J D, ZHUANG J Y, LUO J, et al. Parametric modeling method of planing hulls[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(12): 83-88 (in Chinese).
|
26 |
HUMBLE S. Skimming and skipping stones[J]. Teaching Mathematics and Its Applications: An International Journal of the IMA, 2007, 26(2): 95-102.
|
27 |
施内克鲁特. 船舶水动力学[M]. 咸培林, 译. 上海: 上海交通大学出版社, 1997: 288-289.
|
|
SCHNEEKLUTH. Hydromechanik zum schiffsentwurf [M]. Translated by XIAN P L. Shanghai: Shanghai Jiao Tong University Press, 1997: 288-289 (in Chinese).
|
28 |
王曼, 刘毅. 面向飞行器概念设计的动网格技术[J]. 计算机工程与科学, 2013, 35(7): 16-22.
|
|
WANG M, LIU Y. Dynamic grid technology for aircraft conceptual design[J]. Computer Engineering & Science, 2013, 35(7): 16-22 (in Chinese).
|
29 |
张珍铭, 丁运亮, 刘毅, 等. 适用于概念设计的再入飞行器外形优化设计方法[J]. 航空学报, 2011, 32(11): 1971-1979.
|
|
ZHANG Z M, DING Y L, LIU Y, et al. Shape optimization design method for the conceptual design of reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 1971-1979 (in Chinese).
|