1 |
邵帅, 曹航, 王相平, 等. 航空发动机复合材料风扇叶片强度分析与铺层优化设计[J]. 燃气涡轮试验与研究, 2022, 35(4): 20-25.
|
|
SHAO S, CAO H, WANG X P, et al. Strength analysis and ply optimization design of composite fan blades for aero-engine[J]. Gas Turbine Test and Research, 2022, 35(4): 20-25 (in Chinese).
|
2 |
周何, 李小兵, 张婷, 等. 航空发动机复合材料风扇叶片制造工艺应用进展[J]. 航空制造技术, 2022, 65(13): 84-91.
|
|
ZHOU H, LI X B, ZHANG T, et al. Progress in manufacturing technology and application of aeroengine composite fan blades[J]. Aviation Manufacturing Technology, 2022, 65(13): 84-91 (in Chinese).
|
3 |
朱启晨. 复合材料风扇叶片的铺层设计及有限元分析技术研究[D]. 上海: 上海交通大学, 2018: 20-25.
|
|
ZHU Q C. Research on lamination design and finite element analysis of composite fan blades[D]. Shanghai: Shanghai Jiaotong University, 2018: 20-25 (in Chinese).
|
4 |
黄云, 李少川, 肖贵坚, 等. 航空发动机叶片材料及抗疲劳磨削技术现状[J]. 航空材料学报, 2021, 41(4): 17-35.
|
|
HUANG Y, LI S C, XIAO G J, et al. Present situation of aero-engine blade material and anti-fatigue grinding technology[J]. Journal of Aeronautical Materials, 2021, 41(4): 17-35 (in Chinese).
|
5 |
张婷. 航空薄壁件装夹布局优化研究[D]. 南昌: 南昌航空大学, 2017:36-42.
|
|
ZHANG T. Research on the optimization of the clamping layout of aviation thin-walled parts[D]. Nanchang: Nanchang Hangkong University, 2017:36-42 (in Chinese).
|
6 |
ARSLANE M, SLAMANI M, CHATELAIN J F. Development and validation of a machining fixture for complex-shaped components based on Plückerian matrix approach and SDT concept[J]. The International Journal of Advanced Manufacturing Technology, 2021, 25(5): 1-20.
|
7 |
王辉, 周明星, 余杰, 等. 航空发动机叶片保形加工中的定位误差数值建模与分析[J]. 计算机集成制造系统, 2016, 22(9): 2118-2126.
|
|
WANG H, ZHOU M X, YU J, et al. Numerical modeling and analysis of positioning error in conformal machining of aeroengine blades[J]. Computer Integrated Manufacturing System, 2016, 22(9): 2118-2126 (in Chinese).
|
8 |
张凱尧. 航空发动机精锻叶片铣削工装结构分析与优化设计[D]. 烟台: 烟台大学, 2020:54-66.
|
|
ZHANG K Y. Structural analysis and optimal design of milling tooling for aero-engine precision forged blades[D]. Yantai: Yantai University, 2020:54-66 (in Chinese).
|
9 |
任军学, 冯亚洲, 米翔畅, 等. 航空发动机精锻叶片自适应数控加工技术[J]. 航空制造技术, 2015,22 (4): 52-55.
|
|
REN J X, FENG Y Z, MI X C, et al. Adaptive NC machining technology for aero-engine precision forged blades[J]. Aviation Manufacturing Technology, 2015, 22(4): 52-55 (in Chinese).
|
10 |
陈文亮, 潘国威, 丁力平. 飞机数字化装配技术发展现状[J]. 航空制造技术, 2016,28(8): 26-30.
|
|
CHEN W L, PAN G W, DING L P. Development status of aircraft digital assembly technology[J]. Aviation Manufacturing Technology, 2016,28(8): 26-30 (in Chinese).
|
11 |
吴志新, 昂给拉玛, 甘丽君. 航空发动机叶片数控加工新技术及应用[J]. 航空制造技术, 2018, 61(15): 63-68.
|
|
WU Z X, ANGGEI L M, GAN L J. New technology and application of aero-engine blade NC machining[J]. Aviation Manufacturing Technology, 2018, 61(15): 63-68 (in Chinese).
|
12 |
MARSH G. Composites get in deep with new-generation engine[J]. Reinforced Plastics, 2006, 50(11): 26-29.
|
13 |
房建国, 马艳玲, 李迪, 等. 发动机叶片椭圆进排气边智能磨削加工检测一体化技术[J]. 航空精密制造技术, 2016, 52(6): 1-6.
|
|
FANG J G, MA Y L, LI D, et al. Integrated technique for intelligent grinding, machining and detection of engine blade elliptic inlet and exhaust edges[J] Aviation Precision Manufacturing Technology, 2016, 52(6): 1-6 (in Chinese).
|
14 |
宋超. 航空发动机复合材料叶片设计及成形技术研究[D]. 南京: 南京航空航天大学, 2014:34-39.
|
|
SONG C. Research on composite blade design and forming technology of aero-engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 34-39 (in Chinese)
|
15 |
屈力刚, 陈国涛, 苏长青, 等. 飞机壁板真空吸盘式柔性装配工装系统设计[J]. 沈阳航空航天大学学报, 2014, 31(6): 36-41.
|
|
QU L G, CHEN G T, SU C Q, et al. Design of vacuum sucker flexible assembly tooling system for aircraft panel[J]. Journal of Shenyang University of Aeronautics and Astronautics, 2014, 31(6): 36-41 (in Chinese).
|
16 |
吴锡. 机翼薄壁件自动刮胶设备的设计研究[D]. 天津: 河北工业大学, 2020: 28-32.
|
|
WU X. Design and research of automatic glue scraping equipment for thin-walled wing parts[D]. Tianjin: Hebei University of Technology, 2020:28-32 (in Chinese).
|
17 |
王涛, 李战, 王盛, 等. 基于散斑视觉测量的叶片模型重构[J]. 激光与光电子学进展, 2019, 56(1): 232-241.
|
|
WANG T, LI Z, WANG S, et al. Blades model reconstruction based on speckle vision measurement[J]. Laser & Optoelectronics Progress, 2019, 56(1): 232-241 (in Chinese).
|
18 |
冯亚洲. 航空发动机精锻叶片自适应加工工艺几何模型构建[D]. 西安: 西北工业大学, 2018: 34-39.
|
|
FENG Y Z. Construction of adaptive machining process geometric model for aero-engine precision forged blades[D]. Xi’an: Northwest Polytechnic University,2018: 34-39 (in Chinese).
|
19 |
FENG Y, REN J, LIANG Y. Prediction and reconstruction of edge shape in adaptive machining of precision forged blade[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5-8): 2355-2366.
|
20 |
张伟锋. 斯皮尔曼简捷相关系数与基尼伽玛相关系数的统计特性分析[D]. 广州: 广东工业大学, 2020: 57-64.
|
|
ZHANG W F. Analysis of statistical characteristics of Spearman simple correlation coefficient and Gini gamma correlation coefficient[D]. Guangzhou: Guangdong University of Technology, 2020: 57-64 (in Chinese).
|