[1] Boeing Aviation Safety Group. Statistical summary of commercial jet airplane accidents, worldwide operations, 1959-2017[EB/OL]. (2020-10-31)[2021-03-01]. http://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf. [2] 中国民用航空局标准司. 航空器驾驶员训练指南-复杂状态预防和改出训练(UPRT): AC-91-FS-2015-30[R].北京:中国民用航空局, 2015. Standards Department of CAAC. Pilot training guide-upset prevention and recovery training(UPRT): AC-91-FS-2015-30[R]. Beijing: CAAC, 2015(in Chinese). [3] Federal Aviation Administration. Upset prevention and recovery training: FAA AC 120-111[R]. Washington, D.C.: FAA, 2015. [4] ABRAMOV N, GOMAN M, KHRABROY A E, et al. Aerodynamic model of transport airplane in extended envelope for simulation of upset recovery[C]//28th International Congress of the Aeronautical Sciences, 2012. [5] Industry Airplane Upset Recovery Training Aid Team. Airplane upset recovery training aid, Revision2[M]. Virginia: Flight Safety Foundation, 2008: 368-379. [6] 伍开元. 民机空难相关非定常气动力问题研究[J]. 流体力学实验与测量, 2003, 17(2): 1-9. WU K Y. Unsteady aerodynamics in fatal accidents[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(2): 1-9 (in Chinese). [7] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347. WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347 (in Chinese). [8] ABZUG M J. Airplane stability and control[M]. Cambridge: Cambridge University Press, 1977: 108-121. [9] ETKIN B, REID L D. Dynamics of atmospheric flight: stability and control[M]. New York: John Wiley& Sons, Inc., 1972: 264-293. [10] TOBAK M, SCHIFF L B. Aerodynamic mathematical modelling-Basic concepts: AGARD LS-114[R]. Washington,D.C.:AGARD,1981. [11] GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. [12] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4): 391-398. WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 391-398 (in Chinese). [13] ABRAMOV N, GOMAN M, KHRABROV A. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2004. [14] HUANG X Z. Nonlinear indicial response and internal state-space representation and its applications on delta wing aerodynamics[C]//21 st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003. [15] PASHILKAR A. Flight dynamic analysis of the flow incidence rate model[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. [16] ROKHSAZ K, STECK J E. Use of neural networks in control of high-alpha maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 934-939. [17] WANG Q, HE K F, QIAN W Q, et al. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 28(1): 14-23. [18] 龚正, 沈宏良. 非定常气动力的结构自适应神经网络建模方法[J]. 飞行力学, 2007, 25(4): 13-16. GONG Z, SHEN H L. Structure self-adapting ANN method in modeling of unsteady aerodynamics[J]. Flight Dynamics, 2007, 25(4): 13-16 (in Chinese). [19] WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of nonlinear unsteady aerodynamics[C]//23rd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1998. [20] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3): 659-668. [21] KLEIN V, MURPHY P C, CURRY T J, et al. Analysis of wind tunnel longitudinal static and oscillatory data of the F-16XL aircraft: NASA Tm-97-206276[R]. Washington, D.C.: NASA,1997. [22] SMITH M S. Analysis of wind tunnel oscillatory data of the X-31A aircraft: NASA CR-1999-208725[R]. Washington, D.C.: NASA, 1999. [23] 汪清, 何开锋, 钱炜祺, 等. 飞机大攻角空间机动气动力建模研究[J]. 航空学报, 2004, 25(5): 447-450. WANG Q, HE K F, QIAN W Q, et al. Aerodynamic modeling of spatial maneuvering aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 447-450 (in Chinese). [24] GOMAN M G, KHRABROV A N, USOLTSEY S P. Analysis of wind tunnel oscillatory data of the X-31A aircraft[C]//The Inernational Federation of Automatic Control, 11th IFAC Symposium on System Identification. Kitakyushu: IFAC, 1997: 399-404. [25] BRANDON J, FOSTER J, SHAH G, et al. Comparison of rolling moment characteristics during roll oscillations for a low and a high aspect ratio configuration[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2004. [26] ABRAMOV N, GOMAN M, KHRABROV A, et al. Pushing ahead -SUPRA airplane model for upset recovery[C]//AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2012. [27] ABRAMOV N B, GOMAN M G, KHRABROV A N, et al. Aerodynamic modeling for poststall flight simulation of a transport airplane[J]. Journal of Aircraft, 2019, 56(4): 1427-1440. [28] RIVERS M. Common research model [EB/OL]. (2012-02-10)[2018-10-10].https://commonresearchmodel.larc.nasa.gov/geomet. [29] ATINAULT O, HUE D. Design of a vertical tail for the CRM configuration: RT 1/21960 GMT/DAAP[R]. Châillon Cedex: ONERA, 2014. [30] VASSBERG J, DEHAAN M, RIVERS M, et al. Development of a common research model for applied CFD validation studies[C]//26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. [31] 岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模[J]. 航空学报, 2020, 41(8): 123664. CEN F, LI Q, LIU Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123664 (in Chinese). [32] GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. [33] FAN Y, LUTZE E H. Identification of an unsteady aerodynamic model up to high angle of attack regime: AIAA-1996-3407[R].Reston: AIAA,1996. [34] LUCHTENBURG D M, ROWLEY C W, LOHRY M W, et al. Unsteady high-angle-of-attack aerodynamic models of a generic jet transport[J]. Journal of Aircraft, 2015, 52(3): 890-895. [35] PATTINSON J, LOWENBERG M H, GOMAN M G. Investigation of poststall pitch oscillations of an aircraft wind-tunnel model[J]. Journal of Aircraft, 2013, 50(6): 1843-1855. [36] KWATNY H G, DONGMO J E T, CHANG B C, et al. Nonlinear analysis of aircraft loss of control[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(1): 149-162. [37] DONGMO J E. Aircraft stall recovery using nonlinear smooth feedback regulators with inputs constraints[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2011. [38] PAUCK S, ENGELBRECHT J. Bifurcation analysis of the generic transport model with a view to upset recovery[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2012. [39] GILL S J, LOWENBERG M H, NEILD S A, et al. Upset dynamics of an airliner model: a nonlinear bifurcation analysis[J]. Journal of Aircraft, 2013, 50(6): 1832-1842. [40] 岑飞, 聂博文, 刘志涛, 等. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6): 523444. CEN F, NIE B W, LIU Z T, et al. Wind tunnel model flight test technique for advanced fighter aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523444 (in Chinese). [41] CEN F, LI Q, LIU Z T, et al. Post-stall flight dynamics of commercial transport aircraft configuration: a nonlinear bifurcation analysis and validation[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(3): 368-384. |