[1] 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2):520734. GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520734(in Chinese). [2] 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12):124085. BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124085(in Chinese). [3] 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2):173-176. YANG Q, CHANG S N, YUAN X G. Study on numerical method for determining the droplet trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2):173-176(in Chinese). [4] 易贤, 朱国林, 王开春, 等. 翼型积冰的数值模拟[J]. 空气动力学学报, 2002, 20(4):428-433. YI X, ZHU G L, WANG K C, et al. Numerically simulating of ice accretion on airfoil[J]. Acta Aerodynamica Sinica, 2002, 20(4):428-433(in Chinese). [5] BOURGAULT Y, HABASHI W, DOMPIERRE J, et al. An Eulerian approach to supercooled droplets impingement calculations[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997. [6] BOURGAULT Y, BOUTANIOS Z, HABASHI W G. Three-dimensional eulerian approach to droplet impingement simulation using FENSAP-ICE, part 1:Model, algorithm, and validation[J]. Journal of Aircraft, 2000, 37(1):95-103. [7] IULIANO E, BRANDI V, MINGIONE G, et al. Water impingement prediction on multi-element airfoils by means of eulerian and Lagrangian approach with viscous and inviscid air flow[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006. [8] TONG X, LUKE E A. Robust and accurate eulerian multiphase simulations of icing collection efficiency using singularity diffusion model[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(4):483-495. [9] 张大林, 杨曦, 昂海松. 过冷水滴撞击结冰表面的数值模拟[J]. 航空动力学报, 2003, 18(1):87-91. ZHANG D L, YANG X, ANG H S. Numerical simulation of supercooled water droplets impingement on icing surfaces[J]. Journal of Aerospace Power, 2003, 18(1):87-91(in Chinese). [10] 杨胜华, 林贵平, 申晓斌. 三维复杂表面水滴撞击特性计算[J]. 航空动力学报, 2010, 25(2):284-290. YANG S H, LIN G P, SHEN X B. Water droplet impingement prediction for three-dimensional complex surfaces[J]. Journal of Aerospace Power, 2010, 25(2):284-290(in Chinese). [11] 易贤, 王开春, 桂业伟, 等. 结冰面水滴收集率欧拉计算方法研究及应用[J]. 空气动力学学报, 2010, 28(5):596-601, 608. YI X, WANG K C, GUI Y W, et al. Study on Eulerian method for icing collection efficiency computation and its application[J]. Acta Aerodynamica Sinica, 2010, 28(5):596-601, 608(in Chinese). [12] 陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报, 2017, 38(6):120745. CHEN X, ZHAO Q J. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120745(in Chinese). [13] 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1):726371. LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1):726371(in Chinese). [14] 涂国华, 袁湘江, 陈陆军. 适用于超声速的一种通量限制型紧致格式[J]. 航空学报, 2004, 25(4):327-332. TU G H, YUAN X J, CHEN L J. A limited flux compact scheme suited to supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):327-332(in Chinese). [15] 刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报, 2022,43(3):125009. LIU J, HAN F, WEI Y X. Some problem of MUSCL and WENO schemes generated by dimension-by-dimension approach[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(3):125009(in Chinese). [16] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese). [17] 任伟杰, 谢文佳, 田正雨, 等. 高超声速数值激波失稳的网格依赖性[J]. 航空学报, 2021, 42(S1):726376. REN W J, XIE W J, TIAN Z Y, et al. Grid dependence of hypersonic numerical shock instability[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1):726376(in Chinese). [18] 张帝. 高精度有限体积格式及新型VOF自由界面捕捉算法[D]. 北京:清华大学, 2015. ZHANG D. High resolution finite volume method and a refined VOF algorithm[D]. Beijing:Tsinghua University, 2015(in Chinese). [19] HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3):357-393. [20] SWEBY P K. High resolution schemes using flux limiters for hyperbolic conservation laws[J]. SIAM Journal on Numerical Analysis, 1984, 21(5):995-1011. [21] VAN LEER B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme[J]. Journal of Computational Physics, 1974, 14(4):361-370. [22] ROE P L. Characteristic-based schemes for the Euler equations[J]. Annual Review of Fluid Mechanics, 1986, 18:337-365. [23] VAN LEER B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1997, 135(2):229-248. [24] WATERSON N P, DECONINCK H. Design principles for bounded higher-order convection schemes-A unified approach[J]. Journal of Computational Physics, 2007, 224(1):182-207. [25] MORENCY F, TEZOK F, PARASCHIVOIU I. Anti-icing system simulation using CANICE[J]. Journal of Aircraft, 1999, 36(6):999-1006. [26] 曹广州. 迎风表面三维积冰的数学模型与计算方法研究[D]. 南京:南京航空航天大学, 2011. CAO G Z. Investigation of mathematic model and calculational methodology for 3D ice accretion on the up-wind surfaces[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese). [27] PAPADAKIS M, RACHMAN A, WONG S C, et al. Water impingement experiments on a NACA 23012 airfoil with simulated glaze ice shapes[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA,2004. |