赵嶷飞, 王梦琦
收稿日期:
2021-10-19
修回日期:
2021-11-08
发布日期:
2022-05-09
通讯作者:
赵嶷飞,E-mail:yfzhao@cauc.edu.cn
E-mail:yfzhao@cauc.edu.cn
基金资助:
ZHAO Yifei, WANG Mengqi
Received:
2021-10-19
Revised:
2021-11-08
Published:
2022-05-09
Supported by:
摘要: 航空器自1903年诞生至今已逾百年,航空器飞行速度、飞行距离、飞行高度都有了巨大提升。与1924年世界上第一条长距离航路上使用的灯光导航、高频通信设备相比,今天的卫星导航、数据链通信同样发生了翻天覆地的变化。这些巨大进步已经构成一部精彩的航空科学技术发展史。本文尝试转换观察视角,从交通运输角度,审视空中交通管理实践发展历程和学科知识、研究方法积累过程。在此基础上,以构建学科体系为目标,探讨空中交通工程学研究对象、核心概念和基本原理,总结代表性科学问题和关键技术架构,为进一步构建空中交通工程学科体系,指导后续研究提供理论和研究方法上的支持。
中图分类号:
赵嶷飞, 王梦琦. 空中交通工程学理论内涵与关键科学技术[J]. 航空学报, 2022, 43(12): 26537-026537.
ZHAO Yifei, WANG Mengqi. Important theories and critical scientific technology of air traffic engineering[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 26537-026537.
[1] 中华人民共和国国务院. 国家中长期科学和技术发展规划纲要(2006-2020年)[J].中国安防,2006(1):27. State council of the People's Republic of China. Outline of the national medium and long term plan for science and technology development (2006-2020)[J].China Security and Protection,2006(1):27(in Chinese). [2] International Civil Aviation Organization. Aeronautical information services:Annex 15[S].Montréal:International Civil Aviation Organization (ICAO), 2016. [3] International Civil Aviation Organization. Procedures for air navigation services air traffic management:Doc 4444[S].Montréal:International Civil Aviation Organization (ICAO), 2016. [4] Colb@xtra.co.nz. Croydon Airport 1915 to 1959[EB/OL]. (2018-03-15)[2021-10-19]. http://www.airportofcroydon.com/Airport%20History.html. [5] 金绮. 美国民航从送信到运客的嬗变[J]. 大飞机, 2017(7):74-76. JIN Q. The evolution of American civil aviation from delivering letters to transporting passengers[J]. Jetliner, 2017(7):74-76(in Chinese). [6] International Civil Aviation Organization. Rules of the air and air traffic control:Doc 5500[S].Montréal:International Civil Aviation Organization (ICAO), 1948. [7] NOLAN M S. Fundamentals of air traffic control[M]. 4th ed. Belmont, CA:Thomson——Brooks/Cole, 2004 [8] PHILIPP W, GAINCHE F. Air traffic flow management in Europe[M]. Advanced Technologies for Air Traffic Flow Management. London:Springer-Verlag, 2005:64-106. [9] Office of Inspector General, U.S. Department of Transportation. Audit report:Advance automation system, federal aviation administration[R].Washington, D.C.:DOT OIG, 1998. [10] SCHULTZ R, SHANER D, ZHAO Y Y, et al. Free flight concept:AIAA-1997-3677[R]. Reston:AIAA,1997. [11] LACHER A, WALKER G. Collaborative strategic planning in a "free flight" ATM system:AIAA-1995-3895[R]. Reston:AIAA, 1995. [12] RODRÍGUEZ-SANZ Á, CLARAMUNT PUCHOL C, GÓMEZ COMENDADOR F, et al. Air traffic management based on 4D-trajectories:Requirements and practical implementation[J]. MATEC Web of Conferences, 2019, 304:05001. [13] SESAR, Trajectory-based operations[EB/OL]. (2019-02-20)[2021-10-19]. https://www.sesarju.eu/sesar-solutions/trajectory-based-operations. [14] ADAMS C. Maastricht:Initial 4D[C]//2014 Integrated Communications, Navigation and Surveillance Conference (ICNS) Conference Proceedings. Piscataway:IEEE Press,2014:1-11. [15] GILBERT G A. Air traffic control[M]. London:Ziff-Davis Publishing Cmopany, 1945:1-274. [16] BOWEN E G. Operational research into the air traffic problem[J]. Journal of Navigation, 1948, 1(4):338-341. [17] Civil Aeronautics Administration. Operation of the air traffic control system[R]. Washington, D.C.:CAA,1953. [18] BLUMSTEIN A, The landing capacity of a runway[J]. Operations Research, 1959, 7(6):752-763. [19] ZANIESKI J P. Airport capacity analysis a systems approach[M]. Austin:The University Of Texas, 1974. [20] ARAD B A, GOLDEN B T, GRAMBART J E, et al. Control load, control capacity and optimal sector design:RD-64[R]. Atlantic City:National Aviation Facilities Experimental Center, 1963. [21] International Civil Aviation Organization. Air traffic services planning manual:Doc 9426[S].Montréal:International Civil Aviation Organization (ICAO), 1984. [22] 万莉莉, 胡明华. 管制员工作负荷及扇区容量评估问题研究[J]. 交通运输工程与信息学报, 2006, 4(2):70-75. WAN L L, HU M H. Research on the evaluation of controller's workload and the sector capacity[J]. Journal of Transportation Engineering and Information, 2006, 4(2):70-75(in Chinese). [23] MANNINO C, NAKKERUD A, SARTOR G. Air traffic flow management with layered workload constraints[J]. Computers & Operations Research, 2021, 127:105159. [24] MAJUMDAR A, OCHIENG W, MCAULEY G, et al. The factors affecting airspace capacity in Europe:a cross-sectional time-series analysis using simulated controller workload data[J]. Journal of Navigation, 2004, 57(03):385-405. [25] TERRAB M, ODONI A, DEUTSCH O. Ground-holding strategies for ATC flow control[C]//Guidance, Navigation and Control Conference. Reston:AIAA, 1989. [26] KISTAN T, GARDI A, SABATINI R, et al. An evolutionary outlook of air traffic flow management techniques[J]. Progress in Aerospace Sciences, 2017, 88:15-42. [27] BROOKER P. Air traffic control separation minima:Part 1-the current stasis[J]. Journal of Navigation, 2011, 64(3):449-465. [28] REICH P G. Analysis of long-range air traffic systems:Separation standards-I[J]. Journal of Navigation, 1966, 19(1):88-98. [29] LI D B, XU X H, LI X. Target level of safety for Chinese airspace[J]. Safety Science, 2009, 47(3):421-424. [30] MACHOL R E. Thirty years of modeling midair collisions[J]. Interfaces, 1995, 25(5):151-172. [31] 徐肖豪, 李冬宾, 李雄. 飞行间隔安全评估研究[J]. 航空学报, 2008, 29(6):1411-1418. XU X H, LI D B, LI X. Research on safety assessment of flight separation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1411-1418(in Chinese). [32] 薛文安, 周其焕. 通信导航监视/空中交通管理(CNS/ATM)系统概要[J]. 电子科技导报, 1996(6):2-7, 38. XUE W A, ZHOU Q H. Overview of CNS/ATM system[J]. Electronic Science & Technology Review, 1996(6):2-7, 38. (in Chinese) [33] BURGEMEISTER A H, LINDSEY C G, MAKINS N J, et al. Air traffic management concept baseline definition:RR-97-3[R]. Seattle:Boeing Commercial Aircraft Group, 1997. [34] SIPE A L, SCHWAB R W, HARALDSDOTTIR A, et al. Capacity-enhancing air traffic management concept[J]. Journal of Aircraft, 2005, 42(1):105-112. [35] International Civil Aviation Organization. Global air traffic management operational concept:Doc 9854[S]. Canada:ICAO,2005. [36] ODONI A. Reflections on the first year of NEXTOR[R].Washington, DC, USA:FAA, 1997. [37] HANSMAN R J, IDRIS H R. Observation and analysis of departure operations at Boston Logan International Airport[D]. Cambridge:Massachusetts Institute of Technology, 2001:1-137. [38] REYNOLDS H J D. Identification of communication and coordination issues in the US air traffic control system[D]. Cambridge:Massachusetts Institute of Technology, 2001:1-144. [39] GILBO E P. Airport capacity:Representation, estimation, optimization[J]. IEEE Transactions on Control Systems Technology, 1993, 1(3):144-154. [40] IVERSON D L. Inductive system health monitoring[C]//The 2004 International Conference on Artificial Intelligence. Las Vegas:CSREA Press, 2004. [41] STATLER I. The aviation system monitoring and modeling (ASMM) project:A documentation of its history and accomplishments:1999-2005:NASA/TP-2007-214556[R]. Washington, D.C.:NASA, 2007. [42] SCHÄFER M, STROHMEIER M, LENDERS V, et al. Bringing up OpenSky:A large-scale ADS-B sensor network for research[C]//IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. Piscataway:IEEE Press, 2014. [43] PATRIARCA R, DI GRAVIO G, CIOPONEA R, et al. Democratizing business intelligence and machine learning for air traffic management safety[J]. Safety Science, 2022, 146:105530. [44] LI L S, GARIEL M, HANSMAN R J, et al. Anomaly detection in onboard-recorded flight data using cluster analysis[J]. 2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2011. [45] NANDURI A, SHERRY L. Anomaly detection in aircraft data using recurrent neural networks (RNN)[C]//2016 Integrated Communications Navigation and Surveillance (ICNS). Piscataway:IEEE Press, 2016. [46] BASORA L, OLIVE X, DUBOT T. Recent advances in anomaly detection methods applied to aviation[J]. Aerospace, 2019, 6(11):117. [47] GARIEL M, SRIVASTAVA A N, FERON E. Trajectory clustering and an application to airspace monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4):1511-1524. [48] OLIVE X, BIEBER P. Quantitative assessments of runway excursion precursors using Mode S data[DB/OL]. arXiv:1903.11964,2019. [49] OLIVE X, BASORA L. Identifying anomalies in past en-route trajectories with clustering and anomaly detection methods:hal-02345597[R]. Washington,D.C.:FAA,2019 [50] MURCA M C R, DELAURA R, HANSMAN R J, et al. Trajectory clustering and classification for characterization of air traffic flows:AIAA-2016-3760[R]. Reston:AIAA, 2016. [51] MURÇA M C R, HANSMAN R J, LI L S, et al. Flight trajectory data analytics for characterization of air traffic flows:A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo[J]. Transportation Research Part C:Emerging Technologies, 2018, 97:324-347. [52] 田文, 胡明华. 空域扇区概率交通需求预测模型[J]. 西南交通大学学报, 2011, 46(2):340-346. TIAN W, HU M H. Airspace sector probabilistic traffic demand prediction model[J]. Journal of Southwest Jiaotong University, 2011, 46(2):340-346(in Chinese). [53] ERZBERGER H, CHAPEL J D. Concepts and algorithms for terminal-area traffic management[J]. 1984 American Control Conference. Piscataway:IEEE Press, 1984. [54] LIU W Y, HWANG I. Probabilistic trajectory prediction and conflict detection for air traffic control[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6):1779-1789. [55] JUNG S, KOCHENDERFER M J. Learning terminal airspace traffic models from flight tracks and procedures[J]. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2019. [56] BASORA L, COURCHELLE V, BEDOUET J. Occupancy peak estimation from sector geometry and traffic flow data[C]//8th SESAR Innovation Days. Amsterdam:SESAR, 2018. [57] MEIJERS N P. Data-driven predictive analytics of runway occupancy time for improved capacity at airports[D]. Cambridge:Massachusetts Institute of Technology, 2019:1-128. [58] TASCÓN D C, DÍAZ OLARIAGA O. Air traffic forecast and its impact on runway capacity. A System Dynamics approach[J]. Journal of Air Transport Management, 2021, 90:101946. [59] LIU Y L, LIU Y, HANSEN M, et al. Using machine learning to analyze air traffic management actions:Ground delay program case study[J]. Transportation Research Part E:Logistics and Transportation Review, 2019, 131:80-95. [60] 王炜, 过秀成. 交通工程学[M]. 南京:东南大学出版社, 2000. WANG W, GUO X C. Traffic engineering[M]. Nanjing:Southeast University Press, 2000(in Chinese). [61] VIETS K J, TABER N J. An overview of a flight object concept for the national airspace system (NAS):MTR 00 W0000085[R]. McLean:The MITRE Corporation,2000. [62] International Civil Aviation Organization. FIXM US Extension v4.3.0[EB/OL]. (2021-11-30)[2022-03-14]. https://www.fixm.aero/release.pl?rel=US_Ext-4.3.0. [63] International Civil Aviation Organization. Air traffic services:Annex 11[S].Montréal:International Civil Aviation Organization (ICAO), 2018. [64] 中国民用航空局. 民用航空空中交通管理规则:CCAR-93[S]. 北京:中国民用航空局,2017. Civil Aviation Administration of China. Air traffic management rules of civil aviation:CCAR-93[S] Beijing:Civil Aviation Administration of China, 2017(in Chinese). [65] Federal Aviation Agency. Glossary of air traffic control terms:TL725.3.T7U634[S].Washiton,USA:FAA,1962. [66] Clark J P. The 3 M's of ATM[EB/OL]. (2015-06-26)[2022-03-14]. http://www.atmseminar.org. [67] 盛昭瀚, 薛小龙, 安实. 构建中国特色重大工程管理理论体系与话语体系[J]. 管理世界, 2019, 35(4):2-16, 51, 195. SHENG Z H, XUE X L, AN S. Constructing theoretical system and discourse system of mega infrastructure construction management with Chinese characteristics[J]. Management World, 2019, 35(4):2-16, 51, 195(in Chinese). [68] Federal Aviation Administration. Safety risk management Policy:FAA Order 8040.4B[S]. Washington:FAA,2017. [69] 中国民用航空局. 民用航空器征候等级划分办法:AC-395-AS-013[S]. 北京:中国民用航空局, 2021(in Chinese). Civil Aviation Administration of China. Air traffic measures for classification of incident levels of civil aircraft[S] Beijing:Civil Aviation Administration of China,2021. [70] BROOKER P. Air traffic management safety challenges[C]//2nd Institution of Engineering and Technology System Safety Conference. London:IET, 2007. [71] International Civil Aviation Organization. Manual on global performance of the air navigation system:Doc 9883[S].Montréal:International Civil Aviation Organization (ICAO),2009. [72] 袁乐平, 刘露, 孙瑞山. 双岗制下不同席位管制员工作负荷差异性研究[J]. 中国民航大学学报, 2013, 31(1):32-35. YUAN L P, LIU L, SUN R S. Study on variation of controller workload between different positions[J]. Journal of Civil Aviation University of China, 2013, 31(1):32-35(in Chinese). [73] 京昆空中大通道投入运行[J]. 交通建设与管理, 2013(12):19. Beijing-Kunming air passage put into operation[J]. Transportation Construction & Management, 2013(12):19(in Chinese). [74] International Civil Aviation Organization. Safety management manual(SMM):Doc 9859[S].Montréal:International Civil Aviation Organization (ICAO), 2018. [75] International Civil Aviation Organization. Manuel on ATM system requirements:Doc 9882[S].Montréal:International Civil Aviation Organization (ICAO), 2008. [76] International Civil Aviation Organization. Manual on flight and flow-information for a collaborative environment (FF-ICE):Doc 9965[S].Montréal:International Civil Aviation Organization (ICAO), 2012. [77] International Civil Aviation Organization. Manual on collaborative air traffic flow management:Doc 9971[S].Montréal:International Civil Aviation Organization (ICAO), 2015. [78] 盛昭瀚. 重大工程管理基础理论源于中国重大工程管理实践的理论思考[M]. 南京:南京大学出版社, 2020. SHENG Z H. Fundamental theories of mega infrastrucure[i.e. infrastructure] construction management[M]. Nanjing:Nanjing University Press, 2020(in Chinese). [79] 卢守峰, 杨兆升, 刘喜敏. 基于复杂性理论的城市交通系统研究[J]. 吉林大学学报(工学版), 2006, 36(S1):153-156. LU S F, YANG Z S, LIU X M. Research on urban traffic system based on complexity theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(S1):153-156(in Chinese). [80] SCHMIDT D K. On modeling ATC work load and sector capacity[J]. Journal of Aircraft, 1976, 13(7):531-537. [81] MOGFORD R H, GUTTMAN J A, MORROW S L, et al. The complexity construct in air traffic control:A review and synthesis of the literature:DOT/FAA/CT-TN95/22[R]. Washington, D.C.:FAA, 1995. [82] PAWLAK W, BRINTON C, CROUCH K, et al. A framework for the evaluation of air traffic control complexity:AIAA-1996-3856[R]. Reston:AIAA, 1996. [83] LAUDEMAN L V, SHELDEN S G, BRANSTROM R, et al. Dynamic density:an air traffic management metric:NASA/TM-1998-112226[R]. Washington, D.C.:NASA,1998. [84] CAO X B, ZHU X, TIAN Z C, et al. A knowledge-transfer-based learning framework for airspace operation complexity evaluation[J]. Transportation Research Part C:Emerging Technologies, 2018, 95:61-81. [85] HISTON J M, HANSMAN R J, AIGOIN G, et al. Introducing structural considerations into complexity metrics[J]. Air Traffic Control Quarterly, 2002, 10(2):115-130. [86] HELFRICK A. The centennial of avionics:Our 100-year trek to performance-based navigation[J]. IEEE Aerospace and Electronic Systems Magazine, 2015, 30(9):36-45. [87] 朱永文, 谢华, 王长春. 空域数值计算与优化方法[M]. 北京:科学出版社, 2020. ZHU Y W, XIE H, WANG C C. Numerical calculation and optimization of airspace[M]. Beijing:Science Press, 2020(in Chinese). [88] 朱永文, 陈志杰, 蒲钒, 等. 数字化空域系统发展研究[J]. 中国工程科学, 2021, 23(3):135-143. ZHU Y W, CHEN Z J, PU F, et al. Development of digital airspace system[J]. Strategic Study of CAE, 2021, 23(3):135-143(in Chinese). [89] DELAHAYE D, PUECHMOREL S. Air traffic complexity:Towards an intrinsic metric[R]. Washington, D.C.:FAA, 2000. [90] LEE K, FERON E, PRITCHETT A. Describing airspace complexity:Airspace response to disturbances[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1):210-222. [91] 张进, 胡明华, 张晨. 空中交通管理中的复杂性研究[J]. 航空学报, 2009, 30(11):2132-2142. ZHANG J, HU M H, ZHANG C. Complexity research in air traffic management[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2132-2142(in Chinese). [92] 赵嶷飞, 周阳. 五边到场交通态势安全评估研究[J]. 中国安全科学学报, 2011, 21(6):99-103. ZHAO Y F, ZHOU Y. Safety evaluation on five-edge arrival traffic complexity[J]. China Safety Science Journal, 2011, 21(6):99-103(in Chinese). [93] 赵嶷飞, 杨剑, 王红勇. 基于复杂性图的到场航班调配方法研究[J]. 中国民航大学学报, 2013, 31(2):17-21, 28. ZHAO Y F, YANG J, WANG H Y. Method on maneuvering arrival flights based on complexity-map[J]. Journal of Civil Aviation University of China, 2013, 31(2):17-21, 28(in Chinese). [94] 王红勇, 郭宇鹏. 基于航空器自主运行的空中交通复杂性建模[J/OL]. 交通运输系统工程与信息, (2022-02-11)[2022-03-14]. https://kns.cnki.net/kcms/detail/11.4520.U.20220211.1344.013.html. WANG H Y, GUO Y P. An air traffic complexity model based on aircraft self-separation operation[J/OL]. Journal of Transportation Systems Engineering and Information Technology, (2022-02-11)[2022-03-14]. https://kns.cnki.net/kcms/detail/11.4520.U.20220211.1344.013.html (in Chinese). [95] 王红勇, 赵嶷飞, 温瑞英. 基于复杂网络的空中交通复杂性度量方法[J]. 系统工程, 2014, 32(3):112-118. WANG H Y, ZHAO Y F, WEN R Y. Air traffic complexity metrics based on complex networks[J]. Systems Engineering, 2014, 32(3):112-118(in Chinese). [96] WANG H, WEN R, ZHAO Y. Empirical research on topological characteristics of air traffic situation network[J]. Applied Mechanics and Materials, 2015, 744-746:1975-1979. [97] WANG H Y, SONG Z Q, WEN R Y. Modeling air traffic situation complexity with a dynamic weighted network approach[J]. Journal of Advanced Transportation, 2018, 2018:1-15. [98] RADANOVIC M, PIERA EROLES M A, KOCA T, et al. Surrounding traffic complexity analysis for efficient and stable conflict resolution[J]. Transportation Research Part C:Emerging Technologies, 2018, 95:105-124. [99] KOCA T, PIERA M A, RADANOVIC M. A methodology to perform air traffic complexity analysis based on spatio-temporal regions constructed around aircraft conflicts[J]. IEEE Access, 7:104528-104541. [100] WANKE C, CALLAHAM M, GREENBAUM D, et al. Measuring uncertainty in airspace demand predictions for traffic flow management applications:AIAA-2003-5708[R]. Reston:AIAA, 2003. [101] SIMAIAKIS I, BALAKRISHNAN H. A queuing model of the airport departure process[J]. Transportation Science, 2016, 50(1):94-109. [102] 王超, 郑旭芳, 王蕾. 交汇航路空中交通流的非线性特征研究[J]. 西南交通大学学报, 2017, 52(1):171-178. WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1):171-178(in Chinese). [103] ZHANG X, LIU H Z, ZHAO Y F, et al. Multifractal detrended fluctuation analysis on air traffic flow time series:a single airport case[J]. Physica A:Statistical Mechanics and Its Applications, 2019, 531:121790. [104] 罗霞, 杜进有, 霍娅敏. 车头间距分布规律的研究[J]. 西南交通大学学报, 2001, 36(2):113-116. LUO X, DU J Y, HUO Y M. Study on the distribution patterns of time headway of vehicles[J]. Journal of Southwest Jiaotong University, 2001, 36(2):113-116(in Chinese). [105] 向郑涛, 陈宇峰, 李昱瑾, 等. 基于多尺度熵的交通流复杂性分析[J]. 物理学报, 2014, 63(3):038903. XIANG Z T, CHEN Y F, LI Y J, et al. Complexity analysis of traffic flow based on multi-scale entropy[J]. Acta Physica Sinica, 2014, 63(3):038903(in Chinese). [106] 王超, 朱明. 空中交通流微观尾随时距分布模型[J]. 计算机仿真, 2018, 35(5):55-59, 105. WANG C, ZHU M. Microscopic aircraft-following headway distribution model of air traffic flow[J]. Computer Simulation, 2018, 35(5):55-59, 105(in Chinese). [107] WANG C, LI S M, ZHU M. Empirical exploration of air traffic control behaviour at terminal maneuvering area:From an air traffic flow aspect[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(2):187-196. [108] 《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6):1-161. Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress:2016[J]. China Journal of Highway and Transport, 2016, 29(6):1-161(in Chinese). [109] 张洪海, 胡勇, 杨磊, 等. 多机场终端区微观交通流建模与仿真分析[J]. 西南交通大学学报, 2015, 50(2):368-374. ZHANG H H, HU Y, YANG L, et al. Modeling and simulation analysis of microscopic traffic flow in multi-airport terminal airspace[J]. Journal of Southwest Jiaotong University, 2015, 50(2):368-374(in Chinese). [110] 张洪海, 杨磊, 别翌荟, 等. 终端区进场交通流广义跟驰行为与复杂相变分析[J]. 航空学报, 2015, 36(3):949-961. ZHANG H H, YANG L, BIE Y H, et al. Analysis on generalized following behavior and complex phasetransition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):949-961(in Chinese). [111] YANG L, YIN S W, HU M H, et al. Empirical exploration of air traffic and human dynamics in terminal airspaces[J]. Transportation Research Part C:Emerging Technologies, 2017, 84:219-244. [112] YANG L, YIN S W, HAN K, et al. Fundamental diagrams of airport surface traffic:Models and applications[J]. Transportation Research Part B:Methodological, 2017, 106:29-51. [113] MA C Y, CAI Q, ALAM S, et al. Airspace capacity overload identification using collision risk patterns[C]//2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT). Piscataway:IEEE Press, 2020. [114] 高自友, 赵小梅, 黄海军, 等. 复杂网络理论与城市交通系统复杂性问题的相关研究[J]. 交通运输系统工程与信息, 2006, 6(3):41-47. GAO Z Y, ZHAO X M, HUANG H J, et al. Research on problems related to complex networks and urban traffic systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(3):41-47(in Chinese). [115] COOK A, TANNER G, CRISTÓBAL S, et al. New perspectives for air transport performance[R]. Amsterdam:SESAR, 2013. [116] PIEN K C, HAN K, SHANG W L, et al. Robustness analysis of the European air traffic network[J]. Transportmetrica A Transport Science, 2015, 11(9):772-792. [117] GARCÍA-OVIES CARRO I, ARNALDO VALDÉS R M, CORDERO GARCÍA J M, et al. The influence of the air traffic network structure on the occurrence of safety events:A data-driven approach[J]. Safety Science, 2019, 113:161-170. [118] JANIC' M. Reprint of "Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event"[J]. Transportation Research Part A:Policy and Practice, 2015, 81:77-92. [119] GRABBE S R, SRIDHAR B, MUKHERJEE A. Similar days in the NAS:An airport perspective:AIAA-2013-4222[R]. Reston:AIAA, 2013. [120] BRAIN C, VINCENT S. Capacity assessment and planning guidance document[S]. Brussels:EUROCONTROL, 2013. [121] KOTEGAWA T, FRY D, DELAURENTIS D, et al. Impact of service network topology on air transportation efficiency[J]. Transportation Research Part C:Emerging Technologies, 2014, 40:231-250. [122] ZHOU Y M, WANG J W, HUANG G Q. Efficiency and robustness of weighted air transport networks[J]. Transportation Research Part E:Logistics and Transportation Review, 2019, 122:14-26. [123] JETZKI M. The propagation of air transport delays in Europe[J]. Belgium:EUROCONTROL, 2009. [124] XU N, LASKEY K B, CHEN C H, et al. Bayesian network analysis of flight delays[R]. Washington, D.C.:SGS, 2007. [125] PYRGIOTIS N, MALONE K M, ODONI A. Modelling delay propagation within an airport network[J]. Transportation Research Part C:Emerging Technologies, 2013, 27:60-75. [126] REBOLLO J J, BALAKRISHNAN H. Characterization and prediction of air traffic delays[J]. Transportation Research Part C:Emerging Technologies, 2014, 44:231-241. [127] CAI Q, ALAM S, DUONG V. A spatial-temporal network perspective for the propagation dynamics of air traffic delays[J]. Engineering, 2021, 7(1):452-464. [128] CARVALHO L, STERNBERG A, MAIA GONÇALVES L, et al. On the relevance of data science for flight delay research:A systematic review[J]. Transport Reviews, 2021, 41(4):499-528. [129] ANAGNOSTAKIS I, CLARKE J P, BOHME D, et al. Runway operations planning and control:Sequencing and scheduling[J]. Journal of Aircraft, 2001, 38(6):988-996. [130] BRINTON C, LENT S, PROVAN C. Field test results of collaborative departure queue management[C]//29th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2011. [131] OKUNIEK J N, GERDES I, JAKOBI J, et al. A concept of operations for trajectory-based taxi operations:AIAA-2016-3753[R]. Reston:AIAA, 2016. [132] GREEN S, BILIMORIA K, BALLIN M. Distributed air-ground traffic management for en route flight operations:AIAA-2000-4064[R]. Reston:AIAA, 2000. [133] CORRIGAN S, MÅRTENSSON L, KAY A, et al. Preparing for airport collaborative decision making (A-CDM) implementation:An evaluation and recommendations[J]. Cognition, Technology & Work, 2015, 17(2):207-218. [134] REUSSER A, KERN C, MICHALKE R, et al. Arrival flow control by local cherry picking[R]. Washington, D.C.:FAA, 2011. [135] SUGOON F. From BOBCAT to Cross-Border ATFM[EB/OL]. (2015-10-22)[2022-03-14]. https://www.icao.int/APAC/Meetings/Pages/2015-AFTM-WS-IND.aspx. [136] XU Y, DALMAU R, MELGOSA M, et al. A framework for collaborative air traffic flow management minimizing costs for airspace users:Enabling trajectory options and flexible pre-tactical delay management[J]. Transportation Research Part B:Methodological, 2020, 134:229-255. [137] 王兴隆, 齐雁楠, 潘维煌. 基于功能脆弱性的空中交通相依网络流量分配[J]. 航空学报, 2020, 41(4):323479. WANG X L, QI Y N, PAN W H. Flow allocation of air traffic interdependent network based on functional vulnerability[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):323479(in Chinese). [138] 石艳丽. 面向首都机场的航班改降策略研究[D]. 天津:中国民航大学, 2014. SHI Y L. Research on flight alternate strategy of Beijing capital airport[D]. Tianjin:Civil Aviation University of China, 2014(in Chinese). [139] BROOKER P. Air traffic management accident risk. Part 1:The limits of realistic modelling[J]. Safety Science, 2006, 44(5):419-450. [140] BROOKER P. Future air traffic management:Quantitative en route safety assessment part 2-new approaches[J]. Journal of Navigation, 2002, 55(3):363-379. [141] LAROUZEE J, LE COZE J C. Good and bad reasons:The Swiss cheese model and its critics[J]. Safety Science, 2020, 126:104660. [142] FELICI M. Capturing emerging complex interactions:Safety analysis in air traffic management[J]. Reliability Engineering & System Safety, 2006, 91(12):1482-1493. [143] Federal Aviation Administration. A concept paper for separation safety modeling[R]. Washington, D.C.:FAA, 1998. [144] NETJASOV F, JANIC M. A review of research on risk and safety modelling in civil aviation[J]. Journal of Air Transport Management, 2008, 14(4):213-220. [145] BROOKER P. STCA, TCAS, airproxes and collision risk[J]. Journal of Navigation, 2005, 58(3):389-404. [146] ANDREWS J W, WELCH J D, ERZBERGER H. Safety analysis for advanced separation concepts[J]. Air Traffic Control Quarterly, 2006, 14(1):5-24. [147] NETJASOV F, VIDOSAVLJEVIC A, TOSIC V, et al. Development, validation and application of stochastically and dynamically coloured Petri net model of ACAS operations for safety assessment purposes[J]. Transportation Research Part C:Emerging Technologies, 2013, 33:167-195. [148] Federal Aviation Administration. Air traffic control:FAA Order JO 7110.65Z[S]. Washington, D.C.:FAA, 2021. [149] International Civil Aviation Oraganization. Manual on airspace planning methodology for the determination of separation minima:Doc 9689[S].Montréal:International Civil Aviation Organization (ICAO), 1998. [150] NETJASOV F. Framework for airspace planning and design based on conflict risk assessment[J]. Transportation Research Part C:Emerging Technologies, 2012, 24:190-212. [151] YOUSEFI A, DONOHUE G. Temporal and spatial distribution of airspace complexity for air traffic controller workload-based sectorization:AIAA-2004-6455[R]. Reston:AIAA, 2004. [152] XUE M. Airspace sector redesign based on voronoi diagrams[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(12):624-634. [153] KOPARDEKAR P, BILIMORIA K, SRIDHAR B. Initial concepts for dynamic airspace configuration:AIAA-2007-7763[R]. Reston:AIAA, 2007. [154] NAVA-GAXIOLA C A, BARRADO C. Free route airspace and the need of new air traffic control tools[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2016. [155] KALE U, JANKOVICS I, NAGY A, et al. Towards sustainability in air traffic management[J]. Sustainability, 2021, 13(10):5451. [156] IDRIS H, DELCAIRE B, ANAGNOSTAKIS I, et al. Identification of flow constraint and control points in departure operations at airport systems:AIAA-1998-4291[R]. Reston:AIAA, 1998. [157] LI L H, CLARKE J P, CHIEN H H C, et al. A probabilistic decision-making model for runway configuration planning under stochastic wind conditions[J]. 2009 IEEE/AIAA 28th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2009. [158] BERTSIMAS D, FRANKOVICH M, ODONI A. Optimal selection of airport runway configurations[J]. Operations Research, 2011, 59(6):1407-1419. [159] BALAKRISHNAN H, JUNG Y. A framework for coordinated surface operations planning at Dallas-fort worth international airport:AIAA-2007-6553[R]. Reston:AIAA, 2007. [160] GUÉPET J, BRIANT O, GAYON J P, et al. The aircraft ground routing problem:analysis of industry punctuality indicators in a sustainable perspective[J]. European Journal of Operational Research, 2016, 248(3):827-839. [161] SIMAIAKIS I, KHADILKAR H, BALAKRISHNAN H, et al. Demonstration of reduced airport congestion through pushback rate control[J]. Transportation Research Part A:Policy and Practice, 2014, 66:251-267. [162] MENON P K, SWERIDUK G D, BILIMORIA K D. New approach for modeling, analysis, and control of air traffic flow[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):737-744. [163] BAYEN A M, RAFFARD R L, TOMLIN C J. Eulerian network model of air traffic flow in congested areas[C]//Proceedings of the 2004 American Control Conference. Piscataway:IEEE Press, 2004. [164] SRIDHAR B, SONI T, SHETH K, et al. Aggregate flow model for air-traffic management[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):992-997. [165] SUN D F, BAYEN A M. Multicommodity eulerian-Lagrangian large-capacity cell transmission model for en route traffic[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):616-628. [166] KROZEL J, JAKOBOVITS R, PENNY S. An algorithmic approach for airspace flow programs[J]. Air Traffic Control Quarterly, 2006, 14(3):203-229. [167] LULLI G, ODONI A. The European air traffic flow management problem[J]. IFAC Proceedings Volumes, 2006, 39(12):96-100. [168] BERTSIMAS D, LULLI G, ODONI A. An integer optimization approach to large-scale air traffic flow management[J]. Operations Research, 2011, 59(1):211-227. [169] RUIZ S, KADOUR H, CHOROBA P. A novel air traffic flow management model to optimise network delay towards innovative enhancements for computer-assisted slot allocation (CASA)[R]. Washington, D.C.:FAA,2019. [170] Federal Aviation Administration. Global air navigation plan for CNS/ATM systems:Doc 9750[S].Montréal:International Civil Aviation Organization (ICAO), 2016. [171] DENERY D G, ERZBERGER H. The center-tracon automation system:Simulation and field testing:Modelling and simulation in air traffic management[M]. Berlin:Springer Berlin Heidelberg, 1997:113-138. [172] ZEGHAL K, PASUTTO P, HOFFMAN E. Proximity versus dynamicity-an analysis of traffic patterns at major European airports:AIAA-2019-3184[R]. Reston:AIAA, 2019. [173] FAVENNEC B, HOFFMAN E, TRZMIEL A, et al. The point merge arrival flow integration technique:Towards more complex environments and advanced continuous descent:AIAA-2009-6921[R]. Reston:AIAA, 2009. [174] LIANG M, DELAHAYE D, MARÉCHAL P. Integrated sequencing and merging aircraft to parallel runways with automated conflict resolution and advanced avionics capabilities[J]. Transportation Research Part C:Emerging Technologies, 2017, 85:268-291. [175] THOMPSON S. Terminal area separation standards:Historical development, current standards, and processes for change[R]. Cambridge:MIT, 1997. [176] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):179-189. [177] KOCHENDERFER M J, ESPINDLE L P, KUCHAR J K, et al. A comprehensive aircraft encounter model of the national airspace system[J]. Lincoln Laboratory Journal, 2008, 17(2):41-53. [178] TANG J. Conflict detection and resolution for civil aviation:a literature survey[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(10):20-35. [179] 戴世强, 冯苏苇, 顾国庆. 交通流动力学:它的内容、方法和意义[J]. 自然杂志, 1997, 19(4):196-201. DAI S Q, FENG S W, GU G Q. Dynamics of traffic flow:Its content, methodolo-gy and intent[J]. Nature Magazine, 1997, 19(4):196-201(in Chinese). |
[1] | 樊哲铭, 杨未柱, 曾延, 赵哲南, 李磊. 激光熔覆修复GH4169合金各向异性拉伸性能[J]. 航空学报, 2024, 45(8): 429129-429129. |
[2] | 滕俊飞, 李家豪, 周惠焱, 伍大为, 徐海涛, 林铁松, 黄永德. TLP扩散焊接工艺参数对GH5188高温合金接头微观组织及力学性能的影响[J]. 航空学报, 2024, 45(8): 429205-429205. |
[3] | 刘钟琦, 胡旭阳, 罗海宁, 王晓明, 董素君. 战斗机驾驶舱环境热舒适性仿真与优化[J]. 航空学报, 2024, 45(7): 128919-128919. |
[4] | 吴启晖, 董超, 贾子晔, 崔灿, 冯斯梦, 周福辉, 谢华. 低空智联网组网与控制理论方法[J]. 航空学报, 2024, 45(3): 28809-028809. |
[5] | 张锐, 黄卫, 马涛. 基于逻辑-物理框架的智慧机场评价指标量化方法[J]. 航空学报, 2024, 45(10): 30199-030199. |
[6] | 刘鹏宇, 朱雪耀. 基于深度学习的融合空域空管指令语义解析技术[J]. 航空学报, 2023, 44(S1): 727592-727592. |
[7] | 王凤琪, 于忠奇, 孟烨晖, 甘甜, 赵亦希. 复杂内筋铝筒段旋压变形规律和再结晶组织演变数值仿真[J]. 航空学报, 2023, 44(9): 627341-627341. |
[8] | 水笑雨, 王艳军, 王子明, 彭明田, 孙强. 考虑机场公平性的机场群航班时刻分配[J]. 航空学报, 2023, 44(8): 327212-327212. |
[9] | 廖小罕, 屈文秋, 徐晨晨, 贺洪波, 王俊伟, 石伟博. 城市空中交通及其新型基础设施低空公共航路研究综述[J]. 航空学报, 2023, 44(24): 28521-028521-. |
[10] | 赵楠, 李多生, 叶寅, 刘奋成, 江五贵. 激光选区熔化成形GH5188合金微观组织及性能[J]. 航空学报, 2023, 44(19): 428332-428332. |
[11] | 谢华, 苏方正, 尹嘉男, 韩斯特, 张新珏. 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报, 2023, 44(18): 328226-328226. |
[12] | 王兵, 邹润原, 常哲宁. 基于改进模拟退火的航空器起飞质量估算方法[J]. 航空学报, 2023, 44(16): 328090-328090. |
[13] | 刘卫东, 彭皓阳, 刘世杰, 张海龙, 袁雪强. 旋转爆震燃烧及应用研究进展[J]. 航空学报, 2023, 44(15): 528875-528875. |
[14] | 王飞, 韩翔宇. 基于分形插值的空中交通流量短期预测[J]. 航空学报, 2022, 43(9): 325585-325585. |
[15] | 张洲宇, 曹云峰, 范彦铭. 低空小型无人机空域冲突视觉感知技术研究进展[J]. 航空学报, 2022, 43(8): 25645-025645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学