董希旺1,于江龙2,化永朝2,吕金虎2,任章3
收稿日期:
2024-07-05
修回日期:
2024-09-09
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
于江龙
基金资助:
Received:
2024-07-05
Revised:
2024-09-09
Online:
2024-09-10
Published:
2024-09-10
摘要: 协同技术是集群系统执行任务和智能涌现的保障与途径。集群协同的核心是集群中智能体之间通过局部有限邻居之间的信息交互完成复杂的协同行为,进而实现1+1>2的整体任务效能的大幅度提升。通过梳理集群系统协同执行任务所需的功能及相互间的支撑关系,凝练出包括自组织交互、协同感知、协同认知、协同决策规划、协同制导控制在内的5项核心关键支撑技术,提出了面向集群系统智能协同的交互-感知-认知-决策-执行(Interaction-Observation-Orientation-Decision-Action,IOODA)技术体系架构。给出了集群系统智能协同IOODA技术体系架构的概念与内涵,概述了IOODA技术体系涉及的各项关键技术及其进展;分析了IOODA技术体系在集群系统实用化过程中面临的挑战,对各项关键技术未来发展进行了展望。
中图分类号:
董希旺 于江龙 化永朝 吕金虎 任章. 集群系统智能协同IOODA技术体系架构与关键技术[J]. 航空学报, doi: 10.7527/S1000-6893.2024.30911.
[1]殷子樵, 郭炳晖, 马双鸽等.群智体系网络结构的自治调节:从生物调控网络结构谈起[J].计算机科学, 2021, 48(05):184-189 [2]邱华鑫, 段海滨.从鸟群群集飞行到无人机自主集群编队[J].工程科学学报, 2017, 39(03):317-322 [3]秦小林, 罗刚, 李文博等.集群智能算法综述[J].无人系统技术, 2021, 4(03):1-10 [4]于江龙, 董希旺, 李清东等.拦截机动目标的分布式协同围捕制导方法[J].航空学报, 2022, 43(09):521-541 [5]向锦武, 董希旺, 丁文锐等.复杂环境下无人集群系统自主协同关键技术[J].航空学报, 2022, 43(10):333-365 [6]王新尧, 曹云峰, 孙厚俊等.基于的有人无人机协同作战体系结构建模[J].系统工程与电子技术, 2020, 42(10):2265-2274 [7]张堃, 华帅, 袁斌林, 等.基于-的无人机集群体系自主作战系统设计[J].系统工程与电子技术, 2024, 46(04):1273-1286 [8]王维平, 朱一凡, 王涛等.体系视野下的[J].科技导报, 2019, 37(07):12-21 [9]祝学军, 赵长见, 梁卓等.智能赋能技术发展思考[J].航空学报, 2021, 42(04):16-25 [10]Yuan Z, Jin J, Sun L, et al.Ultra-reliable IoT communi-cations with UAVs: A swarm use case[J].IEEE Com-munications Magazine, 2018, 56(12):90-96 [11]Lee HC, Ke KH.Monitoring of large-area IoT sensors using a LoRa wireless mesh network system: Design and evaluation[J].[J].IEEE Transactions on Instrumenta-tion and Measurement, 2018, 67(9):2177-2187 [12]Lakhwani K, Singh T, Aruna O.Multi-Layer UAV Ad Hoc Network Architecture, Protocol and Simulation[J].[J].Artificial Intelligent Techniques for Wireless Commu-nication and Networking,, 2022, 0(0):193-209 [13]Halim A H, Ismail I.Combinatorial optimization: com-parison of heuristic algorithms in travelling salesman problem[J].[J].Archives of Computational Methods in En-gineering, 2019, 26(0):367-380 [14]Qiu J, Gurusamy M, Chua KC, Liu Y.Local restoration with multiple spanning trees in metro Ethernet net-works[J].IEEEACM Transactions on Networking, 2010, 19(2):602-14 [15]Rezoug A, Bader-El-Den M, Boughaci D.Guided ge-netic algorithm for the multidimensional knapsack problem[J].[J].Memetic Computing,, 2018, 10(0):29-42 [16]Li Z, Wang X, Pan L, Zhu L, Wang Z, Feng J, Deng C, Huang L.Network topology optimization via deep rein-forcement learning[J].IEEE Transactions on Commu-nications, 2023, 71(5):2847-2859 [17]冯志尚, 袁霖, 刘军.拒止环境下无人机集群安全通信问题分析[J].[J].信息安全与通信保密, 2023, 4(0):66-72 [18]马承彦.面向无人机协同环境的安全组网技术研究[D].西安电子科技大学, 2020. [19]黄治华, 袁林锋, 蔡全旺.海上无人系统集群通信网络关键技术研究[J].舰船科学技术, 2022, 44(14):127-132 [20]Deng C, Gao W, Wen C, et al.Data-driven practical cooperative output regulation under actuator faults and DoS attacks,[J].IEEE Transactions on Cybernetics, 2023, 53(11):7417-7428 [21]刘军, 袁霖, 冯志尚.集群网络密钥管理方案研究综述[J].网络与信息安全学报, 2022, 8(06):52-69 [22]Kim T, Kim D, Pratas N, et al.An enhanced access reservation protocol with a partial preamble transmis-sion mechanism in NB-IoT systems[J].IEEE Communica-tions Letters, 21, 10(0):2270-2273 [23]de Castro Tomé M, Nardelli PH, Alves H.Long-range low-power wireless networks and sampling strategies in electricity metering[J].IEEE Transactions on Industrial Electronics, 2018, 66(2):1629-1637 [24]李振汉, 唐余亮, 雷鹰.基于的无线传感器网络的自愈功能[J].厦门大学学报自然科学版, 2012, 51(05):834-838 [25]王敏敏,杨燈,王坚..BLE测距精度影响因素评估分析[J].[J].导航定位学报, 2024, 12(01):70-78 [26]丁健楠.跨介质异构无人集群系统协同组网技术研究[D].电子科技大学, 2021. [27]顾凌枫, 何明, 陈国友, 等.无人机集群系统弹性研究[J].系统工程与电子技术, 2020, 43(1):156-162 [28]韦宸越, 何明, 韩伟, 等.无人机集群弹性评估及重构技术研究[J/OL].[J].计算机工程与应用, 2024, 0(0):1-10 [29]周国强, 穆琳, 吴家仁, 等.基于智能体的无人机集群弹性均衡度量与仿真评估方法[J].航空兵器, 2022, 29(03):54-60 [30]Rafiee S, Salavati C, Abdollahpouri A.CNDP: Link Prediction Based on Common Neighbors Degree Penal-ization[J].[J].Physica A: Statistical Mechanics and its Ap-plications, 2020, 539(539):122950-122950 [31]Kang Zhiping, Zeng Hong, Hu Haibo, et al.Multi-Objective Optimized Connectivity Restoring of Dis-joint Segments Using Mobile Data Collectors in Wire-less Sensor Network[J].EURASIP Journal on Wireless Communications and Networking, 2017, 2017(1):1-12 [32]Chouikhi S, El Korbi I, Ghamri-Doudane Y, et al.Dis-tributed Connectivity Restoration in Multichannel Wireless Sensor Networks[J].[J].Computer Networks, 2017, 127(127):282-295 [33]Battistelli G, Chisci L, Mugnai G, et al.Consensus-based linear and nonlinear filtering[J].IEEE Transac-tions on Automatic Control, 2015, 60(5):1410-1415 [34]Jenabzadeh A, Safarinejadian B.Distributed estima-tion and control for nonlinear multi-agent systems in the presence of input delay or external disturbances[J].[J].ISA Transactions, 2020, 98(98):198-206 [35]Huang J, Tang Y, Yang W, et al.Resilient consensus-based distributed filtering: convergence analysis under stealthy attacks[J].IEEE Transactions on Industrial In-formatics, ISA Transactions, 2020, 16(7):4878-4888 [36]陈林秀, 杨翔宇, 张航, 等.基于主动雷达红外信息融合的复合制导方法[J].航空学报, 2022, 43(S1):210-219 [37]Li W L, Jia Y M, Du J P.State estimation for stochastic complex networks with switching topolo-gy[J].IEEE Transactions on Automatic Control, 2017, 62(12):6377-6384 [38]Li W L, Jia Y M, Du J P.Distributed Kalman consensus filter with intermittent observations[J].Journal of the Franklin Institute, 2015, 352(9):3764-3781 [39]Rohr E R, Marelli, D, Fu M Y.Kalman Filter-ing With Intermittent Observations: On the Bound-edness of the Expected Error Covariance[J].IEEE Transactions on Automatic Control, 2014, 59(10):2724-2738 [40]Shen B, Wang Z D, Qiao H.Event-triggered state esti-mation for discrete-time multidelayed neu-ral networks with stochastic parameters and incom-plete measure-ment[J].IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5):1152-1163 [41]Liu Q Y, Wang Z D, He X.Event-based dis-tributed filtering with stochastic measurement fad-ing[J].IEEE Transactions on Industrial Informatics, 2015, 11(6):1643-1652 [42]Brown M, Lowe D G.Automatic panoramic image stitching using invariant features[J].[J].International jour-nal of computer vision, 2007, 74(74):59-73 [43]Snavely N, Seitz S M, Szeliski R.Modeling the world from internet photo collections[J].[J].International journal of computer vision, 2008, 80(80):189-210 [44]Lowe D G.Distinctive image features from scale-invariant keypoints[J].International journal of comput-er vision, 2004, 60(60):91-110 [45]Krizhevsky A, Sutskever I, Hinton G E.Imagenet clas-sification with deep convolutional neural networks[C]. // . In Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 1097-1105. [46]Brown M, Lowe D G.Automatic panoramic image stitching using invariant features[J].[J].International jour-nal of computer vision., 2007, 74(74):59-73 [47]宋晓茹, 刘康, 高嵩, 等.基于深度学习的军事目标识别算法综述[J].科学技术与工程, 2022, 22(22):9466-9475 [48]Willes J, Harrison J, Harakeh A, et al.Bayesian embed-dings for few-shot open world recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2022, 46(3):1513-1529 [49]Gou J, Yu B, Maybank S J, et al.Knowledge distillation: A survey[J].International Journal of Computer Vision, 2021, 129(6):1789-1819 [50]Yang X, Yan J, Wang W, et al.Brain-inspired models for visual object recognition: an overview[J].Artificial Intelligence Review, 2022, 55(7):5263-5311 [51]Liu Z, Tang H, Amini A, et al.Bevfusion: Multi-task multi-sensor fusion with unified bird' s-eye view repre-sentation[C]//2023 IEEE international conference on robotics and automation (ICRA). IEEE, 2023: 2774-2781. [52]Weng J, Ding Y, Hu C, et al.Meta-neural-network for real-time and passive deep-learning-based object recognition[J].Nature communications, 2020, 11(1):6309-6309 [53]Wu X, Sahoo D, Hoi S C H.Recent advances in deep learning for object detection[J].[J].Neurocomputing, 2020, 396(396):39-64 [54]Bar-Shalomy.Tracking in a cluttered environ-ment with probilitic data association[J].[J].Autimatica, 1997, 11(5):451-460 [55]Rakai L, Song H, Sun S J, et al.Data association in multiple object tracking: A survey of recent tech-niques[J].[J].Expert Systems with Applications, 2022, 192(192):116300-116300 [56]许飞, 漆斌, 程海涛, 等.基于-的航迹生成算法建模与仿真[J].空天防御, 2021, 4(01):97-102 [57]朱云峰.基于多源信息融合的无人机相对导航技术研究[D]. 南京航空航天大学, 2022. [58]潘泉, 王增福, 梁彦, 等.信息融合理论的基本方法与进展[J].控制理论与应用, 2012, 29(10):1233-1244 [59]武成锋, 程进, 郭晓云, 等.飞行器集群协同定位与导航对抗技术发展与展望[J].宇航学报, 2022, 43(02):131-142 [60]魏帅迎, 杜雨桐, 胡博, 等.拒止环境下集群协同导航技术发展现状及分析[J].导航与控制, 2023, 22(04):5-16 [61]Liu T, Li B, Yang L, et al.Tightly coupled integration of GNSSUWBVIO for reliable and seamless position-ing[J].IEEE Transactions on Intelligent Transportation Systems, 2023, 25(2):2116-2128 [62]仲维彬, 张扬, 韩春雷.基于深度学习的空海防御智能态势认知技术研究[J].现代导航, 2022, 13(04):268-272 [63]朱丰, 胡晓峰, 吴琳, 等.从态势认知走向态势智能认知[J].系统仿真学报, 2018, 30(03):761-771 [64]D’Aniello G.Fuzzy logic for situation awareness: a systematic review[J].Journal of Ambient Intelligence and Humanized Computing, 2023, 14(4):4419-4438 [65]陈致远, 沈堤, 余付平, 等.基于空域协同的空中目标综合识别方法[J].现代防御技术, 2022, 50(03):61-77 [66]李玉庆, 江飞龙, 陈卓, 等.一种利用的无人集群对抗态势要素识别方法[J].哈尔滨工业大学学报, 2022, 54(12):1-9 [67]Lee C E, Baek J, Son J, et al.Deep AI military staff: Cooperative battlefield situation awareness for com-mander’s decision making[J].The Journal of Super-computing, 2023, 79(6):6040-6069 [68]孙怡峰, 廖树范, 吴疆, 等.基于大模型的态势认知智能体[J].指挥控制与仿真, 2024, 46(02):1-7 [69]Cao X, Sun C, Wang X.Threat Assessment Strategy of Human-in-the-Loop Unmanned Underwater Vehicle Under Uncertain Events[J].IEEE Transactions on Sys-tems, Man, and Cybernetics: Systems, 2024, 54(1):520-532 [70]孙海文, 于邵祯, 江源, 等.海上无人机蜂群目标威胁评估方法[J].兵工学报, 2022, 43(S2):32-39 [71]华家辉, 孙鑫, 陈晓东, 等.基于集群分析的空中作战目标威胁评估技术研究[J].[J].战术导弹技术, 2023, 02(02):96-104 [72]Zhang Z, Wang H F, Geng J, et al.An infor-mation fusion method based on deep learning and fuzzy dis-count-weighting for target intention recog-nition[J].Engineering applications of Artificial Intelligence, 2022, 109(5):104610-104610 [73]张晨浩, 周焰, 蔡益朝, 等.空中目标作战意图识别研究综述[J].现代防御技术, 2024, 0(0):0-0 [74]吴南方.基于循环神经网络的集群意图识别方法研究[D]. 西南交通大学, 2019. [75]杨锐, 杨继龙, 刘晓凡, 等.基于动态序列贝叶斯网络的空地协同作战意图识别[J].指挥控制与仿真, 2024, 46(3):75-85 [76]张祥银, 张曦梁, 张天.网络攻击下基于分布式意图识别的集群逃逸与汇聚控制[J].控制与决策, 2024, 0(0):0-0 [77]张根源, 林智伟, 唐旭, 等.无人机蜂群轨迹预测研究[J].航空工程进展, 2023, 14(03):69-76 [78]王昱, 关智慧, 李远鹏.基于轨迹预测和分布式MADDPG的无人机集群追击决策[J].计算机应用, 2024, 0(0):0-0 [79]薛健, 赵琳, 向贤财, 等.非完全信息下无人机集群对抗研究综述[J].电子与信息学报, 2024, 46(04):1157-1172 [80]楚威, 周芳, 丁冉, 等.面向战场行为预测的平行仿真系统构建方法[J].指挥信息系统与技术, 2019, 10(03):25-31 [81]韩戈白, 张海越, 柳永齐, 等.美军作战综合保障态势一张图研究综述[J].信息化研究, 2021, 47(06):1-5 [82]李归, 伍光新, 薛慧, 等.海战场态势生成技术发展综述[J].电讯技术, 2022, 62(05):678-685 [83]周洁静, 蒋婷婷.通用空战场综合态势图的研究[J].信息化研究, 2020, 46(04):1-6 [84]肖东.异构多无人机自主任务规划方法研究[D]. 南京:南京航空航天大学, 2018. [85]贾高伟, 王建峰.无人机集群任务规划方法研究综述[J].系统工程与电子技术, 2021, 43(01):99-111 [86]毕文豪, 张梦琦, 高飞, 等.无人机集群任务分配技术研究综述[J].系统工程与电子技术, 2024, 46(03):922-934 [87]张瑞鹏, 冯彦翔, 杨宜康.多无人机协同任务分配混合粒子群算法[J].航空学报, 2022, 43(12):418-433 [88]李明哲, 马琼敏, 伍国华.基于强化学习的无人机集群动态任务规划算法[J].系统仿真技术, 2023, 19(03):193-204 [89]翟政, 何明, 徐鹏, 等.基于市场机制的无人集群任务分配研究综述[J].计算机应用研究, 2023, 40(07):1921-1928 [90]鞠锴, 冒泽慧, 姜斌, 等.基于势博弈的异构多智能体系统任务分配和重分配[J].自动化学报, 2022, 48(10):2416-2428 [91]郝冠捷, 姚尧, 常鹏, 等.基于深度强化学习的分布式集群任务分配算法[J].指挥控制与仿真, 2023, 45(03):25-33 [92]李梦杰, 常雪凝, 石建迈, 等.武器目标分配问题研究进展:模型、算法与应用[J].系统工程与电子技术, 2023, 45(04):1049-1071 [93]强裕功, 宋贵宝, 刘铁, 等.基于拍卖算法的动态防空武器目标分配[J].兵工自动化, 2023, 42(07):50-54 [94]刘攀, 徐胜利, 张迪, 等.基于粒子群优化的多导弹动态武器目标分配算法[J].南京航空航天大学学报, 2023, 55(01):108-115 [95]马悦, 吴琳, 许霄.基于多智能体强化学习的协同目标分配[J].系统工程与电子技术, 2023, 45(09):2793-2801 [96]易凯, 张修社, 胡小全, 等.多特征融合与深度学习的防空目标分配方法[J].[J].战术导弹技术, 2023, 04(04):165-172 [97]卢锐, 彭鹏菲.基于深度强化学习的海上编队防空任务分配[J].火力与指挥控制, 2023, 48(06):35-41 [98]于汶江, 谢旭东, 王子凡, 等.基于势场导引的空地跨域协同探测方法[J].无人系统技术, 2023, 6(06):12-20 [99]范铮铮, 王正平, 葛佳昊.基于A*算法的多无人机实时打击航迹规划[J].[J].战术导弹技术, 2021, 05(05):94-101+112. [100]杨小草, 都延丽, 步雨浓, 等.基于层次分解的在线三维~*协同航路规划[J].系统工程与电子技术, 2023, 45(05):1409-1419 [101]邓云山, 夏元清, 孙中奇.基于松弛序列凸优化的轮式机器人协同轨迹规划[J].无人系统技术, 2021, 4(01):24-32 [102]徐广通, 王祝, 曹严, 等.动态优先级解耦的无人机集群轨迹分布式序列凸规划[J].航空学报, 2022, 43(02):420-431 [103]周宏宇, 王小刚, 单永志, 等.基于改进粒子群算法的飞行器协同轨迹规划[J].自动化学报, 2022, 48(11):2670-2676 [104]尹依伊, 王晓芳, 周健.基于学习的多无人机协同航迹规划方法[J].兵工学报, 2023, 44(02):484-495 [105]朱建文, 赵长见, 李小平, 包为民.基于强化学习的集群多目标分配与智能决策方法[J].兵工学报, 2021, 42(09):2040-2048 [106]符小卫,王辉,徐哲.基于-的多无人机协同追捕策略[J].航空学报, 2022, 43(5):522-535 [107]单圣哲,张伟伟.基于自博弈深度强化学习的空战智能决策方法[EB/OL].[J].航空学报,, 2024, 4(04):206-218 [108]Ye M J, Hu G Q.Distributed nash equilibrium seeking by a consensus based approach[J].IEEE Transactions on Automatic Control, 2017, 62(9):4811-4818 [109]Gadjov D, Pavel L.A passivity-based approach to Nash equilibrium seeking over networks[J].IEEE Transac-tions on Automatic Control, 2019, 64(3):1077-1092 [110]Liu F, Dong X W, Yu J L, et al.Distributed Nash equi-librium seeking of N-coalition noncooperative games with application to uav swarms[J].IEEE Transactions on Network Science and Engineering, 2022, 9(4):2392-2405 [111]Issacs R.Differential games I, II, III, IV[R]. The RAND Corporation, Research Memoranda RM-1391, RM-1399, RM-1411, RM-1486, 1954. [112]Yan R, Shi Z, Zhong Y.Reach-avoid games with two defenders and one attacker: An analytical approach[J].IEEE Transactions on Cybernetics, 2018, 49(3):1035-1046 [113]Yamasaki T., Balakrishnan S. Triangle intercept guid-ance for aerial defense[C]. AIAA Guidance, Navigation, & Control Conference, 2010. [114]于江龙,董希旺,李清东等.基于微分对策的拦截机动目标协同制导方法[J].指挥与控制学报, 2020, 6(03):217-222 [115]Vamvoudakis K.G., Lewis F.L. Multi-player non-zero-sum games: Online adaptive learning solution of cou-pled Hamilton-Jacobi equations[M]. Pergamon Press, Inc. 2011. [116]Vamvoudakis K.G,Lewis FL.,Hudas G.R. Multi-agent differential graphical games: Online adaptive learning solution for synchronization with optimality[J].Auto-matica, 2012, 48(8):1598-1611 [117]Jiang H, Zhang H.G, Xiao G.Y., et al..Data-based ap-proximate optimal control for nonzero-sum games of multi-player systems using adaptive dynamic pro-gramming[J].[J].Neurocomputing, 2018, 275(275):192-199 [118]Marden J.Arslan G,Shamma J. Cooperative control and potential games[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(6):1393-1407 [119]罗亚中,李振瑜,祝海.航天器轨道追逃微分对策研究综述[J].中国科学:技术科学, 2020, 50(12):1533-1545 [120]魏娜, 刘明雍, 张帅等.基于协同对抗的水下博弈策略优化[J].西北工业大学学报, 2019, 37(01):63-69 [121]Ren W, Beard R W.Consensus seeking in multiagent systems under dynamically changing interaction topol-ogies[J].IEEE Transactions on Automatic Control, 2005, 50(5):655-661 [122]Lin P, Jia Y M, Li L.Distributed robust H∞ consensus control in directed networks of agents with time-delay[J].Systems & Control Letters, 2008, 57(8):643-653 [123]Tian Y P, Liu C L.Consensus of multi-agent systems with diverse input and communication delays[J].IEEE Transactions on Automatic Control, 2008, 53(9):2122-2128 [124]Xiao F, Wang L.State consensus for multi-agent sys-tems with switching topologies and time-varying de-lays[J].International Journal of Control, 2006, 79(10):1277-1284 [125]Sun Y G, Wang L, Xie G M.Average consensus in net-works of dynamic agents with switching topologies and multiple time-varying delays[J].Systems & Control Letters, 2008, 57(2):175-183 [126]Sun Y G, Wang L.Consensus of multi-agent systems in directed networks with nonuniform time-varying de-lays[J].IEEE Transactions on Automatic Control, 2009, 54(7):1607-1613 [127]Xiao F, Wang L, Chen J, et al.Finite-time formation control for multi-agent systems[J].Automatica, 2009, 45(11):2605-2611 [128]Xie G M, Wang L.Moving formation convergence of a group of mobile robots via decentralised information feedback[J].International Journal of Systems Science, 2009, 40(10):1019-1027 [129]Por?ri M, Roberson D G, Stilwell D J.Tracking and formation control of multiple autonomous agents: A two-level consensus approach[J].Automatica, 2007, 43(8):1318-1328 [130]Ma C Q, Zhang J F.On formability of linear continu-ous-time multi-agent systems[J].Journal of Systems Science and Complexity, 2012, 25(1):13-29 [131]Dong X W, Hu G, Q.Time-varying formation control for general linear multi-agent systems with switching directed topologies[J][J].Automatica, 2016, 73(73):47-55 [132]Lippay Z S, Hoagg J B..Formation control with time-varying formations, bounded controls, and local colli-sion avoidance[J][J].IEEE Transactions on Control Sys-tems Technology, 2022, 30(1):261-276 [133]Liu H, Tian Y, Lewis F L, et al.Robust formation flying control for a team of satellites subject to nonlinearities and uncertainties[J].[J].Aerospace Science and Technology, 2020, 95(6):105455-105455 [134]Zhuang M L, Tan L G, Li K H, et al.Fixed-time for-mation control for spacecraft with prescribed perfor-mance guarantee under input saturation[J].[J].Aerospace Science And Technology, 2021, 119(119):107176-107176 [135]Ren W,Beard R.Virtual structure based spacecraft formation control with formation feedback [C] Pro-ceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.2002. [136]Askari A, Mortazavi M, Talebi H.UAV formation con-trol via the virtual structure approach[J].Journal of Aerospace Engineering, 2015, 28(1):04014047-04014047 [137]Kownacki C.Multi—UAV flight using virtual structure combined with behavioral approach [J].[J].Acta Mechani-ca et Automalica, 2016, 10(2):92-99 [138]Sun J, Tang J, Lao S..Collision avoidance for coopera-tive UAVs with optimized artificial potential field algo-rithm[J][J].IEEE Access, 2017, 5(0):18382-18390 [139]Wu T, Wang J, Tian B.Periodic event—triggered for-mation control for multi—UAV systems with collision avoidance[J].Chinese Journal of Aeronautics, 2022, 35(8):139-203 [140]夏庆军, 张安, 张耀中.大规模编队空战队形优化算法[J].控制理论与应用, 2010, 27(10):1418-1422 [141]徐星光, 王晓峰, 姚璐, 任章.固定翼无人机编队构型与通信拓扑优化[J].系统工程与电子技术, 2022, 44(9):2936-2946 [142]李清华, 高影, 王振桓, 等.一种动态分组的多节点协同定位编队构型优化方法[J].中国惯性技术学报, 2022, 30(6):746-751 [143]Ren W, Sorensen N.Distributed coordination architec-ture for multi-robot formation control[J].Robotics and Autonomous Systems, 2008, 56(4):324-333 [144]Yu X, Liu L.Cooperative control for moving-target circular formation of nonholonomic vehicles[J].IEEE Transactions on Automatic Control, 2016, 62(7):3448-3454 [145]Dong X W, Li Y F, Lu C, et al.Time-varying formation tracking for UAV swarm systems with switching di-rected topologies[J].IEEE transactions on neural net-works and learning systems, 2018, 30(12):3674-3685 [146]Hua Y Z, Dong X W, Li Q D, et al.Distributed time-varying formation robust tracking for general linear multiagent systems with parameter uncertainties and external disturbances[J].IEEE Transactions on cyber-netics, 2017, 47(8):1959-1969 [147]Hua Y Z, Dong X W, Han L, et al.Finite-time time-varying formation tracking for high-order multiagent systems with mismatched disturbances[J].IEEE Trans-actions on Systems, Man, and Cybernetics: Systems, 2018, 50(10):3795-3803 [148]Dong X W, Hu G Q.Time-varying formation tracking for linear multiagent systems with multiple leaders[J].IEEE Transactions on Automatic Control, 2017, 62(7):3658-3664 [149]Zhang H G, Li W H, Zhang J, et al.Fully distributed dynamic event-triggered bipartite formation tracking for multiagent systems with multiple nonautonomous leaders[J].IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10):7453-7466 [150]Ji M, Ferrari-Trecate G, Egerstedt M, et al.Contain-ment control in mobile networks[J].IEEE Transactions on Automatic Control, 2008, 53(8):1972-1975 [151]Liu H, Xie G, Wang L.Necessary and sufficient condi-tions for containment control of networked multi-agent systems[J].Automatica, 2012, 48(7):1415-1422 [152]Dong X W, Shi Z Y, Lu G, et al.Output containment analysis and design for high-order linear time-invariant swarm systems[J].International Journal of Robust and Nonlinear Control, 2015, 25(6):900-913 [153]Zuo S, Song Y, Lewis F L, et al.Adaptive output con-tainment control of heterogeneous multi-agent systems with unknown leaders[J].[J].Automatica, 2018, 92(92):235-239 [154]Li T S, Bai W W, Liu Q, et al.Distributed fault-tolerant containment control protocols for the discrete-time multiagent systems via reinforcement learning meth-od[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(8):3979-3991 [155]Ma Y S, Che W W, Deng C, et al.Observer-based event-triggered containment control for MASs under DoS attacks[J].IEEE Transactions on Cybernetics, 2021, 52(12):13156-13167 [156]Dimarogonas D V, Egerstedt M, Kyriakopoulos K J.A leader-based containment control strategy for multiple unicycles[C]//Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006: 5968-5973. [157]Dong X W, Shi Z Y, Lu G, et al.Formation‐containment analysis and design for high‐order linear time‐invariant swarm systems[J].International Jour-nal of Robust and Nonlinear Control, 2015, 25(17):3439-3456 [158]Jiang W, Wen G, Peng Z, et al.Fully distributed for-mation-containment control of heterogeneous linear multiagent systems[J].IEEE Transactions on Automatic Control, 2018, 64(9):3889-3896 [159]Hua Y, Dong X, Han L, et al.Formation-containment tracking for general linear multi-agent systems with a tracking-leader of unknown control input[J].[J].Systems & control letters, 2018, 122(0):67-76 [160]Sun Q, Wang X, Chen Y H.Satellite formation-containment control emphasis on collision avoidance and uncertainty suppression[J].IEEE Transactions on Cybernetics, 2023, 53(8):5121-5134 [161]Zhou P, Chen B M.Formation-containment control of Euler–Lagrange systems of leaders with bounded un-known inputs[J].IEEE Transactions on Cybernetics, 2020, 52(7):6342-6353 [162]Jeon I S, Lee J I, Tahk M J.Homing guidance law for cooperative attack of multiple missiles[J].Journal of guidance, control, and dynamics, 2010, 33(1):275-280 [163]Tsalik R, Shima T.Circular impact-time guidance[J].Journal of Guidance, Control, and Dynamics, 2019, 42(8):1836-1847 [164]Chen Y, Guo D, Wang J, et al.Cooperative circular guidance with nonuniform field-of-view constraints[J].Journal of Guidance, Control, and Dynamics, 2022, 45(8):1435-1450 [165]Tang J, Zuo Z.Cooperative Circular Guidance of Mul-tiple Missiles: A Practical Prescribed-Time Consensus Approach[J].[J].Journal of Guidance, Control, and Dy-namics, :, 2023, 46(9):1799-1813 [166]Zhao J, Zhou R, Dong Z.Three-dimensional coopera-tive guidance laws against stationary and maneuvering targets[J].Chinese Journal of Aeronautics, 2015, 28(4):1104-1120 [167]Zhao Q L, Dong X W, Liang Z X, et al.Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies[J].Chinese Journal of Aeronautics, 2017, 30(4):1570-1581 [168]Kumar S R, Mukherjee D.Cooperative salvo guidance using finite-time consensus over directed cycles[J].IEEE Transactions on Aerospace and Electronic Sys-tems, 2019, 56(2):1504-1514 [169]Li G, Wu Y, Xu P.Fixed-time cooperative guidance law with input delay for simultaneous arrival[J].Interna-tional Journal of Control, 2021, 94(6):1664-1673 [170]Kang S, Wang J, Li G, et al.Optimal cooperative guid-ance law for salvo attack: An MPC-based consensus perspective[J].IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5):2397-2410 [171]Kim H G, Kim H J.Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view[J].IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(1):82-94 [172]Mukherjee D, Kumar S R.Field-of-view constrained impact time guidance against stationary targets[J].IEEE Transactions on Aerospace and Electronic Sys-tems, 2021, 57(5):3296-3306 [173]Lee S, Cho N, Kim Y.Impact-time-control guidance strategy with a composite structure considering the seeker’s field-of-view constraint[J].Journal of Guid-ance, Control, and Dynamics, 2020, 43(8):1566-1574 [174]Dong W, Wang C, Wang J, et al.Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J].Journal of Guidance, Con-trol, and Dynamics, 2021, 44(11):2001-2015 [175]Chen Y, Guo D, Wang J, et al.Cooperative circular guidance with nonuniform field-of-view constraints[J].Journal of Guidance, Control, and Dynamics, 2022, 45(8):1435-1450 [176]李锦,张锐.一种基于过重力补偿的双角度约束制导律研究[J].现代防御技术, 2017, 45(01):18-21 [177]王家祥,杨新民,王伟等.基于制导炮弹的过重力补偿比例导引律优化设计[J].兵器装备工程学报, 2017, 38(07):67-70 [178]Kim B S, Lee J G, Hang S.Biased PNG law for impact with angular constraint [J].[J].lEEE Transactions on Aeropace and Electronic Systems, 1998, 34(1):277-288 [179]付主木, 曹晶, 王晓红.具有末端落角约束的空地导弹滑模变结构制导律设计[J].信息与控制, 2015, 44(03):291-297 [180]吴鹏, 杨明.带终端攻击角度约束的变结构制导律[J].[J].固体火箭技术, 2008, 02(02):116-120 [181]陈韵,常燕,苗昊春等.落角约束最优制导律在空地导弹上的应用[J].弹箭与制导学报, 2018, 38(05):141-144 [182]蔡洪, 胡正东, 曹渊.具有终端角度约束的导引律综述[J].宇航学报, 2010, 31(02):315-323 [183]王辉, 王江, 王延东等.考虑一阶驾驶仪动力学的角度控制最优制导律[J].北京理工大学学报, 2015, 35(06):585-591 [184]李庆春, 张文生, 韩刚.终端约束条件下末端制导律研究综述[J].控制理论与应用, 2016, 33(01):1-12 [185]张友安, 马培蓓.带有攻击角度和攻击时间控制的三维制导[J].[J].航空学报, 2008, 04(04):1020-1026 [186]张友安,张友根.多导弹攻击时间与攻击角度两阶段制导[J].吉林大学学报: 工学版, 2010, 40(5):1442-1447 [187]田野, 蔡远利, 邓逸凡.一种带时间协同和角度约束的多导弹三维协同制导律[J].控制理论与应用, 2022, 39(05):788-798 [188]Tian Y, Cai Y L.A cooperative guidance law for multi-ple missiles with impact time and terminal angle con-straints [J].[J].Chinese Control and Decision Conference, 2019, 0(0):1504-1510 [189]Feng L P, Fan Z E, Zhang.Y.G. Design of guidance law withimpact angle and impact time constraints [J].[J].Advanced Materials Research, 2014, 94(5):1493-1499 [190]佟廷帅.基于RBF神经网络的滑模制导律研究[D].南京理工大学, 2020. [191]孙磊,付斌,万士正, 常晓飞, 闫杰.基于自适应动态规划的反高超武器微分对策制导律[J].航空工程进展, 2020, 11(06):796-802 [192]Sun J L, Liu C S, Ye C.Robust differential game guid-ance laws design for uncertain interceptor-target en-gagement via adaptive dynamic programming,[J].Interna-tional Journal of Control, 2017, 90(5):990-1004 [193]Eun-Jung S,Hungu L,Tahk M.On-line suboptimal midcourse guidance using neural networks[C]. Pro-ceedings of the 35th SICE Annual,IEEE,Tottori,Japan, 1996. [194]Shao G,Zhe X,Wang X,et al.Adaptive three-dimensional guidance law based on neural dynamic surface control[C].Proceedings of the International Conference on Aircraft Utility Systems,IEEE,Beijing, China, 2016. [195]张秦浩,敖百强,张秦雪.强化学习制导律[J].系统工程与电子技术, 2020, 42(2):414-419 [196]Liang C,Wang W,Liu Z,et al.Learning to guide:Guidance law based on deep meta-learning and model predictive path integral control[J].[J].IEEE Access, 2019, 7(0):47353-47365 [197]Gaudet B,Furfaro R,Linares R.Reinforcement learning for angle-only intercept guidance of maneuver-ing targets[J].[J].Aerospace Science and Technology, 2020, 99(0):105746.-105746. |
[1] | 刘雷, 刘大卫, 王晓光, 陈俊男, 刘东兴. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908-726908. |
[2] | 祝学军, 赵长见, 梁卓, 谭清科. OODA智能赋能技术发展思考[J]. 航空学报, 2021, 42(4): 524332-524332. |
[3] | 陈雨童, 胡明华, 杨磊, 张昊然, 赵征. 受限航路空域自主航迹规划与冲突管理技术[J]. 航空学报, 2020, 41(9): 324045-324045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学