| [1] |
FAA. Nextgen concept of operations for urban air mo-bility (UAM) v1.0[R].Washington, D.C.: FAA, 2020.
|
| [2] |
FAA. Urban air mobility (UAM) concept of operations0[R]. Washington, D.C.: FAA, 2023.
|
| [3] |
SESAR 3 JU. U-space CONOPS 4th Edition[EB/OL]. [2023-09-07]. .
|
| [4] |
BAURANOV A, RAKAS J. Designing airspace for urban air mobility: A review of concepts and approaches[J]. Progress in Aerospace Sciences, 2021, 125: 100726.
|
| [5] |
中国民用航空总局. 2023年民航行业发展统计公报[EB/OL].[2025-03-12]. .
|
|
Civil Aviation Administration of China. Statistical communiqué on the development of civil aviation industry in 2023 [EB/OL]. [2025-03-12]. .
|
| [6] |
国务院, 中央军委. 无人驾驶航空器飞行管理暂行条例[J]. 中华人民共和国国务院公报, 2023(20): 6-16.
|
|
The State Council of the People’s Republic of China, The Central Military Commission of the Communist Party of china. Interim regulations on flight management of unmanned aerial vehicles[J]. Gazette of the State Council of the People’s Republic of China, 2023(20): 6-16 (in Chinese).
|
| [7] |
中国民用航空局. 民用无人驾驶航空器运行安全管理规则[J]. 中华人民共和国国务院公报, 2024(9): 36-85.
|
|
Civil Aviation Administration of China. Civil unmanned aerial vehicle operation safety management rules[J]. Gazette of the State Council of the People’s Republic of China, 2024(9): 36-85 (in Chiness).
|
| [8] |
张建平, 张翔, 邹翔, 等.无人机管控及应用服务体系建设[EB/OL].(2021-08-11).[2025-05-25]..
|
|
ZHANG J P, ZHANG X, ZOU X, et al. Construction of UAV control and application service system[EB/OL].(2021-08-11). [2025-05-25]. (in Chinese).
|
| [9] |
陈义友, 张建平, 邹翔, 等. 民用无人机交通管理体系架构及关键技术[J]. 科学技术与工程, 2021, 21(31): 13221-13237.
|
|
CHEN Y Y, ZHANG J P, ZOU X, et al. System framework and key technologies of civil unmanned aircraft system traffic management[J]. Science Technology and Engineering, 2021, 21(31): 13221-13237 (in Chinese).
|
| [10] |
ICAO. A unified framework for collision risk modelling in support of the manual on airspace planning methodology for the determination of separation minima: Doc 9689[R]. Montreal: ICAO, 1998.
|
| [11] |
REICH P G. Analysis of long-range air traffic systems: Separation standards-I[J]. Journal of Navigation, 1997, 50(3): 436-447.
|
| [12] |
BROOKER P. Lateral collision risk in air traffic track systems: A‘post-Reich’ event model[J]. Journal of Navigation, 2003, 56(3): 399-409.
|
| [13] |
BROOKER P. Longitudinal collision risk for ATC track systems: A hazardous event model[J]. Journal of Navigation, 2006, 59(1): 55-70.
|
| [14] |
徐肖豪, 李冬宾, 李雄. 飞行间隔安全评估研究[J]. 航空学报, 2008, 29(6): 1411-1418.
|
|
XU X H, LI D B, LI X. Research on safety assessment of flight separation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1411-1418 (in Chinese).
|
| [15] |
徐肖豪, 王振宇, 赵鸿盛. 基于Event的侧向碰撞风险改进模型[J]. 中国民航大学学报, 2008, 26(3): 1-4.
|
|
XU X H, WANG Z Y, ZHAO H S. Improved lateral collision risk model based on event[J]. Journal of Civil Aviation University of China, 2008, 26(3): 1-4 (in Chinese).
|
| [16] |
张洪海, 李博文, 刘皞, 等. 自由空域下多旋翼无人机安全间隔标定方法[J]. 系统工程与电子技术, 2023, 45(10): 3149-3156.
|
|
ZHANG H H, LI B W, LIU H, et al. Demarcation method of safety separation for multi-rotor UAV in free airspace[J]. Systems Engineering and Electronics, 2023, 45(10): 3149-3156 (in Chinese).
|
| [17] |
王兴隆, 王友杰. 基于改进Event模型的多旋翼型eVTOL垂直间隔安全评估方法[J]. 交通信息与安全, 2024, 42(1): 19-27.
|
|
WANG X L, WANG Y J. A safety evaluation of vertical separation for multi-rotor eVTOL based on an improved event model[J]. Journal of Transport Information and Safety, 2024, 42(1): 19-27 (in Chinese).
|
| [18] |
王兴隆, 王友杰. 面向城市低空的多机型eVTOL安全间隔评估[J]. 航空学报, 2025, 46(1): 330604.
|
|
WANG X L, WANG Y J. Safety interval evaluation for multi-aircraft eVTOL in urban low altitude[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 330604 (in Chinese).
|
| [19] |
PUCHOL C C, VICO NAVARRO J, CHUQUITARCO-JIMÉNEZ C A, et al. BUBBLES separation management environment: Architecture and validation of a separation management tool for UTM[C]∥2023 Integrated Communication, Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2023: 1-10.
|
| [20] |
刘继新, 蒋伶潇, 刘禹汐, 等. 无人机冲突探测与解脱技术研究概述[J]. 科学技术与工程, 2023, 23(26): 11081-11089.
|
|
LIU J X, JIANG L X, LIU Y X, et al. Review of unmanned aerial vehicle conflict detection and resolution technology[J]. Science Technology and Engineering, 2023, 23(26): 11081-11089 (in Chinese).
|
| [21] |
FREMOND R, XU Y, INALHAN G. Application of an autonomous multi-agent system using proximal policy optimisation for tactical deconfliction within the urban airspace[C]∥2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2022: 1-10.
|
| [22] |
HUANG C, PETRUNIN I, TSOURDOS A. Strategic conflict management using recurrent multi-agent reinforcement learning for urban air mobility operations considering uncertainties[J]. Journal of Intelligent & Robotic Systems, 2023, 107(2): 20.
|
| [23] |
MURÇA M C R. Identification and prediction of urban airspace availability for emerging air mobility operations[J]. Transportation Research Part C: Emerging Technologies, 2021, 131: 103274.
|
| [24] |
PUCHOL C C, VÉLEZ N V, TEJEDOR J V B, et al. BUBBLES: A new concept of operations for separation management in the U-space[J]. Journal of Physics: Conference Series, 2023, 2526(1): 012092.
|
| [25] |
Union European. Algorithm for analysing the collision risk: SESAR-ER4-31-2019[R].European Union, 2021.
|
| [26] |
ZOU Y Y, ZHANG H H, ZHONG G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety, 2021, 213: 107619.
|
| [27] |
LEE S, ABRAMSON M, PHILLIPS J D, et al. Preliminary analysis of separation standards for urban air mobility using unmitigated fast-time simulation[C]∥2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2022: 1-10.
|
| [28] |
陈艺君, 余莎莎, 张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京航空航天大学学报, 2025, 51(3): 806-815.
|
|
CHEN Y J, YU S S, ZHANG X J. Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 806-815 (in Chinese).
|
| [29] |
张洪海, 严勇杰, 邹依原, 等. 无人机安全风险评估指标及方法[J]. 指挥信息系统与技术, 2022, 13(2): 56-62, 90.
|
|
ZHANG H H, YAN Y J, ZOU Y Y, et al. Safety risk assessment index and assessment method for unmanned aerial vehicles[J]. Command Information System and Technology, 2022, 13(2): 56-62, 90 (in Chinese).
|
| [30] |
CHEN C, EDWARDS M W, GILL B, et al. Defining well clear separation for unmanned aircraft systems operating with noncooperative aircraft[C]∥AIAA Aviation 2019 Forum. AIAA, 2019.
|
| [31] |
MANFREDI G, JESTIN Y. Are you clear about “well clear”?[C]∥2018 International Conference on Unmanned Aircraft Systems, 2018.
|
| [32] |
JARUS. JARUS guidelines on specific operations risk assessment (SORA): JAR-DEL-WG6-D.04[R]. Washington, D.C.: JARUS, 2016.
|
| [33] |
SUN R, ZHANG Y C, YE B J, et al. A required navigation performance based approach to monitor the accuracy and integrity performance of UAVs for delivery applications[C]∥China Satellite Navigation Conference, 2018.
|
| [34] |
程琦, 孙蕊, 张文宇, 等. 无人机快递RNP的总系统误差建模及灵敏度分析[C]∥第十届中国卫星导航年会论, 2019.
|
|
CHENG Q, SUN R, ZHANG W Y,et al. Modeling and sensitivity analysis of total system error of UAV express RNP[C]∥Proceedings of the 10th China Satellite Navigation Annual Conference, 2019 (in Chinese).
|
| [35] |
范龙, 柴洪洲. 北斗二代卫星导航系统定位精度分析方法研究[J]. 海洋测绘, 2009, 29(1): 25-27, 45.
|
|
FAN L, CHAI H Z. Study on method of analyzing the positioning accuracy of Beidou 2nd generation satellite navigation system[J]. Hydrographic Surveying and Charting, 2009, 29(1): 25-27, 45 (in Chinese).
|
| [36] |
徐沛宁, 陈荣伟, 张静, 等. 北斗单频星基增强服务性能初步评估[J]. 导航定位学报, 2023, 11(3): 90-95.
|
|
XU P N, CHEN R W, ZHANG J, et al. Preliminary performance analysis of BDSBAS-B1C over China[J]. Journal of Navigation and Positioning, 2023, 11(3): 90-95 (in Chinese).
|