[1] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51:357-377. [2] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52:477-508. [3] DOWELL E H. Eigenmode analysis in unsteady aerodynamics:Reduced order models[J]. AIAA Journal, 1996, 34(8):1578-1583. [4] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656:5-28. [5] HU L W, ZHANG J, XIANG Y, et al. Neural networks-based aerodynamic data modeling:A comprehensive review[J]. IEEE Access, 2020, 8:90805-90823. [6] SCHMIDHUBER J. Deep learning in neural networks:An overview[J]. Neural Networks, 2015, 61:85-117. [7] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366. [8] TAYLOR G W, FERGUS R, LECUN Y, et al. Convolutional learning of spatio-temporal features[C]//Proceedings of the 11th European Conference on Computer Vision:Part VI. New York:ACM, 2010:140-153. [9] YANG C, YANG X B, XIAO X Y. Data-driven projection method in fluid simulation[J]. Computer Animation and Virtual Worlds, 2016, 27(3-4):415-424. [10] TOMPSON J, SCHLACHTER K, SPRECHMANN P, et al. Accelerating eulerian fluid simulation with convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. New York:ACM, 2017:3424-3433. [11] MILANO M, KOUMOUTSAKOS P. Neural network modeling for near wall turbulent flow[J]. Journal of Computational Physics, 2002, 182(1):1-26. [12] LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166. [13] ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31(1):015105. [14] MIYANAWALA T P, JAIMAN R K. An efficient deep learning technique for the navier-stokes equations:Application to unsteady wake flow dynamics[DB/OL]. arXiv preprint:1710.09099, 2017. [15] ZHANG Y, SUNG W J, MAVRIS D. Application of convolutional neural network to predict airfoil lift coefficient[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2018. [16] GUO X X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016:481-490. [17] BHATNAGAR S, AFSHAR Y, PAN S W, et al. Prediction of aerodynamic flow fields using convolutional neural networks[J]. Computational Mechanics, 2019, 64(2):525-545. [18] RIBEIRO M D, REHMAN A, AHMED S, et al. DeepCFD:Efficient steady-state laminar flow approximation with deep convolutional neural networks[DB/OL]. arXiv preprint:2004.08826v2, 2020. [19] SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5):057103. [20] SEKAR V, ZHANG M Q, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal, 2019, 57(3):993-1003. [21] THUEREY N, WEIßENOW K, PRANTL L, et al. Deep learning methods for Reynolds-averaged navier-stokes simulations of airfoil flows[J]. AIAA Journal, 2020, 58(1):25-36. [22] TANGSALI K, KRISHNAMURTHY V R, HASNAIN Z. Generalizability of convolutional encoder-decoder networks for aerodynamic flow-field prediction across geometric and physical-fluidic variations[J]. Journal of Mechanical Design, 2021, 143(5):051704. [23] HUI X Y, BAI J Q, WANG H, et al. Fast pressure distribution prediction of airfoils using deep learning[J]. Aerospace Science and Technology, 2020, 105:105949. [24] WU H Z, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers & Fluids, 2020, 198:104393. [25] DURU C, ALEMDAR H, BARAN Ö U. CNNFOIL:Convolutional encoder decoder modeling for pressure fields around airfoils[J]. Neural Computing and Applications, 2021, 33(12):6835-6849. [26] RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham:Springer International Publishing, 2015:234-241. [27] COOK P, FIRMIN M, MCDONALD M. Aerofoil RAE 2822:Pressure distributions,and boundary layer and wake measurements:AGARD-AR-138[R]. Research and Technology Organisation, 1979. |