[1] CAPONE F J, RE R J, BARE E A. Parametric investigation of single expansion ramp nozzles at Mach numbers from 0.60 to 1.20: NASA TP-3240[R]. Washington, D.C.: NASA, 1992. [2] MITANI T, UEDA S, TANI K, et al. Validation studies of scramjet nozzle performance[J]. Journal of Propulsion and Power, 1993, 9(5): 725-730. [3] MIRMIRANI M, WU C, CLARK A, et al. Modeling for control of a generic airbreathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2005. [4] SUMMERFIELD M, FOSTER C, SWAN W. Flow separation in overexpanded supersonic exhaust nozzles[J]. Jet Propulsion, 1954, 24(9):319-321. [5] NAVE L, COFFEY G. Sea level side loads in high-area-ratio rocket engines[C]//9th Propulsion Conference. Reston: AIAA, 1973. [6] AHLBERG J H, HAMILTON S, MIGDAL D, et al. Truncated perfect nozzles in optimum nozzle design[J]. ARS Journal, 1961, 31(5): 614-620. [7] RAO G V R. Exhaust nozzle contour for optimum thrust[J]. Journal of Jet Propulsion, 1958, 28(6): 377-382. [8] RAO G V R. Approximation of optimum thrust nozzle contours[J]. ARS Journal, 1960, 30(6): 561. [9] DUMNOV G E. Unsteady side-load acting on the nozzle with developed separation zone: AIAA-1996-3220[R]. Reston: AIAA, 1996. [10] FREY M, HAGEMANN G. Status of flow separation prediction in rocket nozzles[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998. [11] ÖSTLUND J, DAMGAARD T, FREY M. Side-load phenomena in highly overexpanded rocket nozzles[J]. Journal of Propulsion and Power, 2004, 20(4): 695-704. [12] ENGBLOM W. Numerical prediction of SERN performance using wind code (invited)[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2003. [13] 谭杰, 金捷, 杜刚, 等. 过膨胀单边膨胀喷管试验和数值模拟[J]. 推进技术, 2009, 30(3): 292-296. TAN J, JIN J, DU G, et al. Experimental and computational investigation of a over-expanded single-expansion-ramp-nozzle[J]. Journal of Propulsion Technology, 2009, 30(3): 292-296(in Chinese). [14] 谭杰, 金捷, 杜刚, 等. 单边膨胀喷管试验和数值模拟[J]. 航空动力学报, 2011, 26(6): 1223-1230. TAN J, JIN J, DU G, et al. Experimental and computational investigation of single-expansion-ramp-nozzle[J]. Journal of Aerospace Power, 2011, 26(6): 1223-1230(in Chinese). [15] YU Y, XU J L, MO J W, et al. Principal parameters in flow separation patterns of over-expanded single expansion RAMP nozzle[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2): 274-288. [16] YU Y, XU J L, WANG M T. The separation pattern transition phenomena and its effects on the SERN performance[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012. [17] 徐惊雷, 张艳慧, 张堃元. 超燃冲压发动机非对称喷管非设计状态性能计算[J]. 推进技术, 2007, 28(3): 287-290. XU J L, ZHANG Y H, ZHANG K Y. Numerical simulation of single expansion ramp nozzle for scramjet on the off-design point[J]. Journal of Propulsion Technology, 2007, 28(3): 287-290(in Chinese). [18] MOUSAVI S M, POURABIDI R, GOSHTASBI-RAD E. Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle[J]. Acta Astronautica, 2018, 146: 273-281. [19] 周莉, 肖华, 王占学, 等. 无源腔结构对大膨胀比单膨胀斜面喷管的影响[J]. 航空动力学报, 2015, 30(8): 1811-1817. ZHOU L, XIAO H, WANG Z X, et al. Effects of passive cavity on high pressure ratio single expansion ramp nozzle[J]. Journal of Aerospace Power, 2015, 30(8): 1811-1817(in Chinese). [20] 周莉, 王占学, 肖华, 等. 带无源腔结构的单膨胀斜面喷管性能分析[J]. 工程热物理学报, 2015, 36(7): 1456-1460. ZHOU L, WANG Z X, XIAO H, et al. Performance analysis of single expansion ramp nozzle with passive cavity[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1456-1460(in Chinese). [21] 贺旭照, 秦思, 周凯, 等. 比热比和压比对高超飞行器尾喷流影响的实验研究[J]. 实验流体力学, 2017, 31(1): 13-19. HE X Z, QIN S, ZHOU K, et al. Experimental study of the influence of the specific heat and pressure ratios on the hypersonic vehicle’s nozzle plume[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 13-19(in Chinese). [22] 贺旭照, 秦思, 卫锋, 等. 吸气式高超声速飞行器非均匀尾喷流试验[J]. 航空学报, 2017, 38(3): 120199. HE X Z, QIN S, WEI F, et al. Test of non-uniform nozzle plume for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120199(in Chinese). [23] 秦思, 贺旭照, 曾学军, 等. 喷流落压比对高超飞行器尾喷管内外流干扰的实验[J]. 航空动力学报, 2017, 32(10): 2491-2497. QIN S, HE X Z, ZENG X J, et al. Experiment of influence of the nozzle pressure ratio on the interaction between the external flow and nozzle flow of hypersonic aerocraft[J]. Journal of Aerospace Power, 2017, 32(10): 2491-2497(in Chinese). [24] 莫建伟. TBCC排气系统设计方法及流场特性研究[D]. 南京: 南京航空航天大学, 2015. MO J W. Research on design method and flow charac-teristics of TBCC exhaust system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese). [25] 何成军, 李建强, 范召林, 等. 单边膨胀喷管内流动分离非定常特性[J]. 航空动力学报, 2019, 34(11): 2339-2346. HE C J, LI J Q, FAN Z L, et al. Flow separation unsteadiness in single expansion ramp nozzle[J]. Journal of Aerospace Power, 2019, 34(11): 2339-2346(in Chinese). [26] 何成军, 李建强, 范召林, 等. 过膨胀状态下单边膨胀喷管内壁面压力非定常特性试验研究[J]. 推进技术, 2020, 41(3): 537-543. HE C J, LI J Q, FAN Z L, et al. Experimental investigation of wall pressure unsteadiness in an over-expanded single expansion ramp nozzle[J]. Journal of Propulsion Technology, 2020, 41(3): 537-543(in Chinese). [27] SCHMUCKER R H. Flow processes in overexpanded chemical rocket nozzles. Part 1: Flow separation: NASA-TM-77396[R]. Washington, D.C.: NASA, 1984. [28] VERMA S B, MANISANKAR C. Origin of flow asymmetry in planar nozzles with separation[J]. Shock Waves, 2014, 24(2): 191-209. [29] BARNHARDT P J, GREBER I. Experimental investiga-tion of unsteady shock wave turbulent boundary layer interactions about a blunt fin: NASA CR 202334[R]. Washington, D.C.: NASA, 2002. [30] TAM C K W, SEINER J M, YU J C. Proposed relationship between broadband shock associated noise and screech tones[J]. Journal of Sound and Vibration, 1986, 110(2): 309-321. [31] VERMA S, CHIDAMBARANATHAN M, HADJAD J A. Analysis of shock unsteadiness in a supersonic over-expanded planar nozzle[J]. European Journal of Mechanics - B/Fluids, 2018, 68: 55-65. [32] DUSSAUGE J P, DUPONT P, DEBIÈVE J F. Unsteadiness in shock wave boundary layer interactions with separation[J]. Aerospace Science and Technology, 2006, 10(2): 85-91. [33] DOLLING D S, OR C T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows[J]. Experiments in Fluids, 1985, 3(1): 24-32. [34] CHAPMAN D R, KUEHN D M, LARSON H K. Preliminary report on a study of separated flows in supersonic and subsonic streams: NACA RM-A55L14[R]. Washington, D.C.: NASA, 1956. |