[1] 李素循. 激波与边界层主导的复杂流动[M]. 北京: 科学出版社, 2007: 167-170. LI S X. Complicated flow governed by shock and boundary layer[M]. Beijing: Science Press, 2007: 167-170(in Chinese). [2] 潘宏禄, 李俊红, 张学军. 突起物及其干扰区热环境影响范围分析[J]. 计算物理, 2013, 30(6): 825-832. PAN H L, LI J H, ZHANG X J. Analysis on thermal environment of interaction region around protuberance in high speed flows[J]. Chinese Journal of Computational Physics, 2013, 30(6): 825-832(in Chinese). [3] HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. [4] DOLLING D S, BOGDONOFF S M. Scaling of interactions of cylinders with supersonic turbulent boundary layers[J]. AIAA Journal, 1981, 19(5): 655-657. [5] CHANDOLA G, HUANG X, ESTRUCH-SAMPER D. Highly separated axisymmetric step shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2017, 828: 236-270. [6] DOLLING D S, BOGDONOFF S M. Blunt fin-induced shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1982, 20(12): 1674-1680. [7] ÖZCAN O, HOLT M. Supersonic separated flow past a cylindrical obstacle on a flat plate[J]. AIAA Journal, 1984, 22(5): 611-617. [8] SEDNEY R, KITCHENS C. Measurement and correlation of separation ahead of protuberances in an turbulent boundary layer: AIAA-1976-0163[R]. Reston: AIAA, 1976. [9] SEDNEY R, KITCHENS C W. Separation ahead of protuberances in supersonic turbulent boundary layers[J]. AIAA Journal, 1977, 15(4): 546-552. [10] WESTKAEMPER J C. Turbulent boundary-layer separation ahead of cylinders[J]. AIAA Journal, 1968, 6(7): 1352-1355. [11] HAHN P V, FRENDI A. Interaction of three-dimensional protuberances with a supersonic turbulent boundary layer[J]. AIAA Journal, 2013, 51(7): 1657-1666. [12] LEIDY A N, NEEL I T, TICHENOR N R, et al. High-speed schlieren imaging of cylinder-induced hypersonic-shock-wave-boundary-layer interactions[J]. AIAA Journal, 2020, 58(7): 3090-3099. [13] HE L, YI S H, ZHAO Y X, et al. Visualization of coherent structures in a supersonic flat-plate boundary layer[J]. Chinese Science Bulletin, 2011, 56(6): 489-494. [14] LIU X L, YI S H, NIU H B, et al. Experimental investigation about the second-mode waves in hypersonic boundary layer over a cone at small angle of attack[J]. Experimental Thermal and Fluid Science, 2020, 118: 110143. [15] WANG D P, ZHAO Y X, XIA Z X, et al. Flow visualization of supersonic flow over a finite cylinder[J]. Chinese Physics Letters, 2012, 29(8): 084702. [16] ZHAO Y X, YI S H, TIAN L F, et al. Multiresolution analysis of density fluctuation in supersonic mixing layer[J]. Science China Technological Sciences, 2010, 53(2): 584-591. [17] NIU H B, YI S H, LIU X L, et al. Experimental investigation of boundary layer transition over a delta wing at Mach number 6[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1889-1902. [18] DOLLING D S, BOGDONOFF S M. Scaling of interactions of cylinders with supersonic turbulent boundary layers[J]. AIAA Journal, 1981, 19(5): 655-657. [19] HUANG X, ESTRUCH-SAMPER D. Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2018, 856: 797-821. [20] 王洪平, 高琪, 王晋军. 基于层析PIV的湍流边界层涡结构统计研究[J]. 中国科学: 物理学力学天文学, 2015, 45(12): 73-86. WANG H P, GAO Q, WANG J J. The statistical study of vortex structure in turbulent boundary layer flow based on Tomographic PIV[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2015, 45(12): 73-86(in Chinese). |