[1] WARWICK G. DARPA leads drive to build trust in AI for aerospace. Aviationweek[EB/OL]. (2019-07-24)[2020-04-03]. https://aviationweek.com/air-transport/darpa-leads-drive-build-trust-ai-aerospace. [2] SEBASTIANELLI A, DEL ROSSO M P, ULLO S L. Automatic dataset builder for machine learning applications to satellite imagery[DB/OL]. arXiv preprint arXiv:2008.01578, 2020. [3] IZZO D, MRTENS M, PAN B F. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics, 2019, 3(4):287-299. [4] IZZO D, SPRAGUE C I, TAILOR D V. Machine learning and evolutionary techniques in interplanetary trajectory design[M]//Modeling and optimization in space engineering. Cham:Springer, 2019:191-210. [5] 王伟林. 空间机动飞行器清除碎片任务规划与制导控制技术[D]. 长沙:国防科技大学, 2017:1-17. WANG W L. Mission plan of active debris removal and design of guidance and control techniques applying space maneuver vehicle[D]. Changsha:National University of Defense Technology, 2017:1-17(in Chinese). [6] 刘付成. 人工智能在航天器控制中的应用[J]. 飞控与探测, 2018, 1(1):30-39. LIU F C. Application of artificial intelligence in spacecraft[J]. Flight Control & Detection, 2018, 1(1):30-39(in Chinese). [7] XU Y, LUO D, LI D, et al. Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance[J]. Chinese Journal of Aeronautics, 2019, 32(12):2679-2693. [8] LI S, SHE Y. Recent advances in contact dynamics and post-capture control for combined spacecraft[J]. Progress in Aerospace Sciences, 2021,120:100678. [9] 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用, 2019, 45(4):7-18. YUAN L, HUANG H. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application, 2019, 45(4):7-18(in Chinese). [10] 蔡鹏. 挠性航天器建模与姿态控制系统研究[D]. 哈尔滨:哈尔滨工业大学, 2008:1-16. CAI P. Dynamic modeling and attitude control for flexible spacecraft[D]. Harbin:Harbin Institute of Technology, 2008:1-16(in Chinese). [11] 葛东明, 史纪鑫, 邓润然, 等. 一种柔性多体动力学建模方法及其工程应用[J]. 航天器环境工程, 2019, 36(4):323-329. GE D M, SHI J X, DENG R R, et al. Flexible multi-body dynamics modeling and its engineering application[J]. Spacecraft Environment Engineering, 2019, 36(4):323-329(in Chinese). [12] 袁旭, 朱圣英, 乔栋, 等. 小天体着陆动力学参数不确定性影响分析[J]. 深空探测学报, 2014, 1(2):56-61. YUAN X, ZHU S Y, QIAO D, et al. Impact analysis of dynamic parameters uncertainty on small celestial body landing[J]. Journal of Deep Space Exploration, 2014, 1(2):56-61(in Chinese). [13] HUANG Y X, LI S, SUN J. Mars entry fault-tolerant control via neural network and structure adaptive model inversion[J]. Advances in Space Research, 2019, 63(1):557-571. [14] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J].航空学报, 2020, 41(1):50-62. ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):50-62(in Chinese). [15] 包为民.航天智能控制技术让运载火箭"会学习"[J].航空学报, 2021, 42(11):525055. BAO W M. Space intelligent control technology enables launch vehicle to "self-learning"[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(11):525055(in Chinese). [16] TRUSZKOWSKI W, HALLOCK H, ROUFF C, et al. Autonomous and autonomic systems:With applications to NASA intelligent spacecraft operations and exploration systems[M]. Berlin:Springer Science & Business Media, 2010:173-186. [17] HASSRIZAL H B, ROSSITER J A. A survey of control strategies for spacecraft attitude and orientation[C]//2016 UKACC 11th International Conference on Control (CONTROL). Piscataway:IEEE Press, 2016. [18] SCHIERMAN J D, WARD D G, HULL J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results[J]. Journal of Guidance Control and Dynamics, 2004, 27(6):975-988. [19] REITER J A, SPENCER D B, LINARES R. Spacecraft detection avoidance maneuver optimization using reinforcement learning[C]//29th AAS/AIAA Space Flight Mechanics Meeting, 2019:3055-3069. [20] ZHU Y H, LUO Y Z. Fast evaluation of low-thrust transfers via deep neural networks[DB/OL]. arXiv preprint:1902.03738, 2019. [21] 李海洋, 宝音贺西. 小推力转移燃料消耗估计的机器学习方法[J]. 深空探测学报, 2019, 6(2):195-200. LI H Y, BAOYIN H X. Machine learning method of estimation for fuel consumption of low-thrust transfers[J]. Journal of Deep Space Exploration, 2019, 6(2):195-200(in Chinese). [22] LI H Y, TOPPUTO F, BAOYIN H X. Autonomous time-optimal many-revolution orbit raising for electric propulsion geo satellites via neural networks[DB/OL]. arXiv preprint:1909.08768, 2019. [23] LI H Y, CHEN S, IZZO D, et al. Deep networks as approximators of optimal transfers solutions in multitarget missions[DB/OL]. arXiv preprint:1902.00250, 2019. [24] SULLIVAN C J, BOSANAC N. Using reinforcement learning to design a low-thrust approach into a periodic orbit in a multi-body system[C]//AIAA Scitech 20 |