航空学报 > 2023, Vol. 44 Issue (S1): 727654-727654   doi: 10.7527/S1000-6893.2022.27654

基于LMI的输出跟踪自适应鲁棒无拖曳控制

孙笑云1,2, 吴树范1,2(), 沈强1,2   

  1. 1.上海交通大学 航空航天学院,上海  200240
    2.上海市引力波探测前沿科学研究基地,上海  200240
  • 收稿日期:2022-06-01 修回日期:2022-06-20 接受日期:2022-07-23 出版日期:2023-06-25 发布日期:2022-07-25
  • 通讯作者: 吴树范 E-mail:shufan.wu@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFC2200800);国家自然科学基金青年科学基金(62103275);上海市自然科学基金面上项目(20ZR1427000)

LMI-based output tracking robust drag-free control with model reference adaptive scheme

Xiaoyun SUN1,2, Shufan WU1,2(), Qiang SHEN1,2   

  1. 1.School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai  200240,China
    2.Shanghai Frontier Science Center for Gravitational Wave Detection,Shanghai  200240,China
  • Received:2022-06-01 Revised:2022-06-20 Accepted:2022-07-23 Online:2023-06-25 Published:2022-07-25
  • Contact: Shufan WU E-mail:shufan.wu@sjtu.edu.cn
  • Supported by:
    National Key Research and Development Program(2020YFC2200800);Youth Program of National Natural Science Foundation of China(62103275);Natural Science Foundation of Shanghai(20ZR1427000)

摘要:

针对空间引力波探测航天器平台稳定姿态控制问题,提出一种改进的多变量模型参考自适应控制(MRAC)方案,应用于探测航天器平台无拖曳控制回路中,实现控制系统闭环鲁棒性的提升,抑制与系统输入相匹配的有界附加干扰和参数不确定性。考虑系统状态不易直接获得,MRAC方案的设计基于输出反馈和输出调节;为提高闭环系统鲁棒性,设计自适应修正项,该修正项的得出基于通过稳定性分析构造的线性矩阵不等式组(LMIs)的解。基于Lyapunov方法的稳定性分析验证了各信号的闭环稳定性,数值仿真验证了无拖曳自由度在面临非线性不确定性和附加干扰时的良好鲁棒性。

关键词: 输出跟踪, 鲁棒控制, 模型参考自适应控制, 无拖曳控制, 空间引力波探测

Abstract:

Aiming at the problem of ultra-stable and high precision attitude control of spacecraft platform for the mission of space gravitational wave detection, an enhanced multivariable robust Model Reference Adaptive Control (MRAC) scheme is proposed. To realize the closed-loop robustness of all the output signals, and suppress bounded external disturbances and parametric uncertainties that match the system input, this scheme is applied to the drag-free control loop of detection spacecraft platform. Considering that the system state is uneasy to obtain directly, the design of the MRAC scheme is based on the output feedback and output regulation. To improve the robustness, an adaptive correction term is derived based on solutions to systems of Linear Matrix Inequalities (LMIs) constructed by stability analysis. The Lyapunov analysis verifies the closed-loop stability of each signal, and the numerical simulation verifies the good robustness of the drag-free DOF in the face of nonlinear uncertainties and additional disturbances.

Key words: output tracking, robust control, model reference adaptive control, drag-free control, space gravitational wave detection

中图分类号: