王巍1, 邢朝洋2, 冯文帅3
收稿日期:
2020-12-03
修回日期:
2020-12-20
发布日期:
2021-04-29
通讯作者:
王巍
E-mail:mems13@163.com
基金资助:
WANG Wei1, XING Chaoyang2, FENG Wenshuai3
Received:
2020-12-03
Revised:
2020-12-20
Published:
2021-04-29
Supported by:
摘要: 自主导航技术是各类运动载体自动化、智能化运行的核心技术。简要介绍了自主导航技术的基本概念,综述了国内外航天、航空、舰船、车辆、单兵等领域的自主导航技术研究进展,对于自主导航的关键技术如惯性导航、惯性基组合导航、地磁导航、重力梯度导航、天文导航和多源信息融合等技术发展现状进行了分析,对自主导航技术的发展趋势进行了展望。可为中国未来各类主流自主导航系统研制提供参考,并为多种自主导航任务的总体设计提供帮助。
中图分类号:
王巍, 邢朝洋, 冯文帅. 自主导航技术发展现状与趋势[J]. 航空学报, 2021, 42(11): 525049-525049.
WANG Wei, XING Chaoyang, FENG Wenshuai. State of the art and perspectives of autonomous navigation technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 525049-525049.
[1] 王巍. 惯性技术研究现状及发展趋势[J]. 自动化学报, 2013, 39(6):723-729. WANG W. Status and development trend of inertial technology[J]. Acta Automatica Sinica, 2013, 39(6):723-729(in Chinese). [2] 胡小平, 吴美平. 自主导航技术[M]. 北京:国防工业出版社, 2016. HU X P, WU M P. Autonomous navigation technology[M]. Beijing:National Defense Industry Press, 2016(in Chinese). [3] 王大轶, 李茂登, 黄翔宇. 航天器多源信息融合自主导航技术[M]. 北京:北京理工大学出版社, 2018. WANG D Y, LI M D, HUANG X Y. Spacecraft autonomous navigation technology based on multi-source information fusion[M]. Beijing:Beijing Institute of Technology Press, 2018(in Chinese). [4] 秦永元. 惯性导航[M]. 2版. 北京:科学出版社, 2014. QIN YY. Inertial navigation[M]. 2nd edition. Beijing:Science Press, 2014(in Chinese). [5] 房建成, 宁晓琳, 田玉龙. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社, 2006. FANG J C, NING X L, TIAN Y L.Principles and methods of spacecraft autonomous celestial navigation[M]. Beijing:National Defense Industry Press, 2006(in Chinese). [6] 高钟毓. 惯性导航系统技术[M]. 北京:清华大学出版社, 2012. GAO Z Y. Inertial navigation system technology[M]. Beijing:Tsinghua University Press, 2012(in Chinese). [7] 王大轶, 符方舟, 孟林智, 等. 深空探测器自主控制技术综述[J]. 深空探测学报, 2019, 6(4):317-327. WANG D Y, FU F Z, MENG L Z, et al. Research of autonomous control technology for deep space probes[J]. Journal of Deep Space Exploration, 2019, 6(4):317-327(in Chinese). [8] 潘科炎. 航天器的自主导航技术[J]. 航天控制, 1994, 12(2):18-27. PAN K Y. Autonomous navigationtechnique for spacecrafts[J]. Aerospace Control, 1994, 12(2):18-27(in Chinese). [9] 丁衡高, 王寿荣, 黄庆安, 等. 微惯性仪表技术的研究与发展[J]. 中国惯性技术学报, 2001, 9(4):46-49. DING H G, WANG S R, HUANG Q A, et al. Research and development of micro inertial instruments[J]. Journal of Chinese InertialTechnology, 2001, 9(4):46-49(in Chinese). [10] 董进武. 惯性导航技术浅析[J]. 仪表技术, 2017(1):41-43. DONG J W. Analysis on inertial navigation technology[J]. Instrumentation Technology, 2017(1):41-43(in Chinese). [11] 徐欣彤, 桑吉章, 刘晖. 深空探测器光学自主导航方法探讨[J]. 导航定位学报, 2021, 9(1):1-4. XU X T, SANG J Z, LIU H. Discussion on optical autonomous navigation methods for deep spacecrafts[J]. Journal of Navigation and Positioning, 2021, 9(1):1-4(in Chinese). [12] 张伟, 许俊, 黄庆龙, 等. 深空天文自主导航技术发展综述[J]. 飞控与探测, 2020, 3(4):8-16. ZHANG W, XU J, HUANG Q L, et al. Survey of autonomous celestial navigation technology for deep space[J]. Flight Control & Detection, 2020, 3(4):8-16(in Chinese). [13] 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测, 2018, 1(1):1-15. FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection, 2018, 1(1):1-15(in Chinese). [14] 薛喜平, 张洪波, 孔德庆. 深空探测天文自主导航技术综述[J]. 天文研究与技术, 2017, 14(3):382-391. XUE X P, ZHANG H B, KONG D Q. An overview of celestial autonomous navigation technology for deep space exploration[J]. Astronomical Research & Technology, 2017, 14(3):382-391(in Chinese). [15] YU Z S, CUI P Y, CRASSIDIS J L. Design and optimization of navigation and guidance techniques for Mars pinpoint landing:Review and prospect[J]. Progress in Aerospace Sciences, 2017, 94:82-94. [16] NING X L, LI Z, YANG Y Q, et al. Analysis of ephemeris errors in autonomous celestial navigation during Mars approach phase[J]. Journal of Navigation, 2017, 70(3):505-526. [17] 王大轶, 胡启阳, 胡海东, 等. 非合作航天器自主相对导航研究综述[J]. 控制理论与应用, 2018, 35(10):1392-1404. WANG D Y, HU Q Y, HU H D, et al. Review of autonomous relative navigation for non-cooperative spacecraft[J]. Control Theory & Applications, 2018, 35(10):1392-1404(in Chinese). [18] GE D T, CUI P Y, ZHU S Y. Recent development of autonomous GNC technologies for small celestial body descent and landing[J]. Progress in Aerospace Sciences, 2019, 110:100551. [19] LI T, HUANG R X, LI H Y, et al. Study on navigation and manual steering strategies in the fly-around phase of teleoperation rendezvous and docking[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(3):595-609. [20] CHRISTIAN J A. Accurate planetary limb localization for image-based spacecraft navigation[J]. Journal of Spacecraft and Rockets, 2017, 54(3):708-730. [21] 陆元九. 火箭轨道控制的辉煌成就[J]. 科学通报, 1960, 5(3):69-70. LU Y J.The brilliant achievement of rocket orbit control[J]. Chinese Science Bulletin, 1960, 5(3):69-70(in Chinese). [22] 颜华, 陈家斌, 刘星桥. 冗余技术提高惯性导航系统可靠性的应用[J]. 中国惯性技术学报, 2003, 11(3):68-72. YAN H, CHEN J B, LIU X Q. Application of redundancy technology in inertial navigation systems[J]. Journal of Chinese Inertial Technology, 2003, 11(3):68-72(in Chinese). [23] 郭建刚, 王跃鹏, 郑伟. 十二表冗余捷联惯导系统数据融合技术研究[J]. 导航定位与授时, 2019, 6(6):41-49. GUO J G, WANG Y P, ZHENG W. Study on data fusion for the 12-sensor redundant strapdown inertial navigation system[J]. Navigation Positioning and Timing, 2019, 6(6):41-49(in Chinese). [24] 王巍. 新型惯性技术发展及在宇航领域的应用[J]. 红外与激光工程, 2016, 45(3):11-16. WANG W. Development of new inertial technology and its application in aerospace field[J]. Infrared and Laser Engineering, 2016, 45(3):11-16(in Chinese). [25] LYU D H, WANG J Q, HE Z M, et al. Landmark-based inertial navigation system for autonomous navigation of missile platform[J]. Sensors, 2020, 20(11):3083. [26] 钱超, 张子剑, 李大伟. 平台式惯性导航系统在线可靠性评估技术[J]. 航空学报, 2017, 38(9):321259. QIAN C, ZHANG Z J, LI D W. On-line reliability assessment of platform inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):321259(in Chinese). [27] 冯培德. 论混合式惯性导航系统[J]. 中国惯性技术学报, 2016, 24(3):281-284, 290. FENG P D. On hybrid inertial navigation systems[J]. Journal of Chinese Inertial Technology, 2016, 24(3):281-284, 290(in Chinese). [28] 魏宗康, 徐白描. 三轴陀螺稳定平台伺服回路全姿态解耦及变增益控制方法[J]. 飞控与探测, 2020, 3(3):8-15. WEI Z K, XU B M. All attitudes decoupling and magnitude-adjusted control method of servo loop of three axis gyro stabilized platform[J]. Flight Control & Detection, 2020, 3(3):8-15(in Chinese). [29] 李海霞, 高钟毓, 张嵘, 等. ESO增强四轴平台伺服系统抗扰能力的研究[J]. 机械工程学报, 2010, 46(12):182-187. LI H X, GAO Z Y, ZHANG R, et al. Enhancing disturbances rejection ability of four-axis gyro stabilized platform with ESO[J]. Journal of Mechanical Engineering, 2010, 46(12):182-187(in Chinese). [30] 唐江河, 詹双豪, 尉超, 等. 基于规划航迹的"三自"光纤惯导系统航向耦合效应抑制技术[J]. 导航定位与授时, 2020, 7(3):46-53. TANGJ H, ZHAN S H, WEI C, et al. Restrain technology of heading-coupling effect of three-autonomy FOG INS based on planned track[J]. Navigation Positioning and Timing, 2020, 7(3):46-53(in Chinese). [31] ZABALEGUI P, DE MIGUEL G, PÉREZ A, et al. A review of the evolution of the integrity methods applied in GNSS[J]. IEEE Access, 2020, 8:45813-45824. [32] 刘俊, 赵菁, 赵慧俊, 等. 仿生光磁导航技术发展研究综述[J]. 飞控与探测, 2019, 2(4):14-25. LIU J, ZHAO J, ZHAO H J, et al. A review of research on development of bionic navigation technology[J]. Flight Control & Detection, 2019, 2(4):14-25(in Chinese). [33] 李俊峰, 崔文, 宝音贺西. 深空探测自主导航技术综述[J]. 力学与实践, 2012, 34(2):1-9. LI J F, CUI W, BAO Y. A survey of autonomous navigation for deep space exploration[J]. Mechanics in Engineering, 2012, 34(2):1-9(in Chinese). [34] DAVARIAN F, ASMAR S, ANGERT M, et al. Improving small satellite communications and tracking in deep space-A review of the existing systems and technologies with recommendations for improvement. part II:small satellite navigation, proximity links, and communications link science[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(7):26-40. [35] WITZE A. NASA plans Mars sample-return rover[J]. Nature, 2014, 509(7500):272. [36] BECKER W, KRAMER M, SESANA A. Pulsar timing and its application for navigation and gravitational wave detection[J]. Space Science Reviews, 2018, 214(1):1-25. [37] 刘博, 申麟. "猎鹰"9火箭一子级海上回收试验成功及成本分析[J]. 中国航天, 2016(5):22-25. LIU B, SHEN L."Falcon" 9 rocket first sub-stage sea recovery test suc-cess and cost analysis[J]. Aerospace China, 2016(5):22-25(in Chinese). [38] CANCIANI A, RAQUET J. Airborne magnetic anomaly navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1):67-80. [39] 刘哲. 卫星导航系统在民用航空领域的发展与应用[J]. 信息通信, 2016, 29(6):127-129. LIU Z.The development and application of satellite navigation system in the field of civil aviation[J]. Information & Communications, 2016, 29(6):127-129(in Chinese). [40] 卢鋆, 张弓, 陈谷仓, 等. 卫星导航系统发展现状及前景展望[J]. 航天器工程, 2020, 29(4):1-10. LU J, ZHANG G, CHEN G C, et al. Development status and prospect of satellite navigation system[J]. Spacecraft Engineering, 2020, 29(4):1-10(in Chinese). [41] 李琬琛. 分布式小卫星系统的技术发展与应用前景[J]. 中国新通信, 2017, 19(23):88-89. LI W C.Technical development and application prospects of distributed small satellite system[J]. China New Telecommunications, 2017, 19(23):88-89(in Chinese). [42] 林益明, 何善宝, 郑晋军, 等. 全球导航星座星间链路技术发展建议[J]. 航天器工程, 2010, 19(6):1-7. LIN Y M, HE S B, ZHENG J J, et al. Development recommendation of inter-satellites links in GNSS[J]. Spacecraft Engineering, 2010, 19(6):1-7(in Chinese). [43] GUO L, WANG F H, GONG X W, et al. Initial results of distributed autonomous orbit determination forBeidou BDS-3 satellites based on inter-satellite link measurements[J]. GPS Solutions, 2020, 24(3):1-11. [44] BELMONTE L M, MORALES R, FERNÁNDEZ-CABALLERO A. Computer vision in autonomous unmanned aerial vehicles-A systematic mapping study[J]. Applied Sciences, 2019, 9(15):3196. [45] 屈蔷, 刘建业, 熊智, 等. 机载天文/惯性位置组合导航[J]. 南京理工大学学报(自然科学版), 2010, 34(6):729-732, 748. QU Q, LIU J Y, XIONG Z, et al. Airborne SINS/CNS location integrated system[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2010, 34(6):729-732, 748(in Chinese). [46] 祖立业, 王卫华, 刘昱晗. 基于通信链路+成像测量的自主导航技术研究[J]. 自动化技术与应用, 2018, 37(6):60-64, 73. ZU L Y, WANG W H, LIU Y H. Autonomous navigation based on communication link and imaging measurement[J]. Techniques of Automation and Applications, 2018, 37(6):60-64, 73(in Chinese). [47] 薛连莉, 沈玉芃, 宋丽君, 等. 2019年国外导航技术发展综述[J]. 导航与控制, 2020, 19(2):1-9. XUE L L, SHEN Y P, SONG L J, et al. Development and review of foreign navigation technology in 2019[J]. Navigation and Control, 2020, 19(2):1-9(in Chinese). [48] 宋韬. 基于陆基导航系统的航空器定位三维约束平差算法及其仿真计算[J]. 兵器装备工程学报, 2019, 40(2):131-135. SONG T. Algorithm and its emulation calculation for three-dimensional constraint adjustment of aircraft positioning basing on ground-based navigation[J]. Journal of Ordnance Equipment Engineering, 2019, 40(2):131-135(in Chinese). [49] NONAMI K. Present state and future prospect of autonomous control technology for industrial drones[J]. IEEE Transactions on Electrical and Electronic Engineering, 2020, 15(1):6-11. [50] 赵娟, 白春, 胡亚辉, 等. 基于北斗卫星的船载无人机惯性导航定位系统[J]. 舰船科学技术, 2020, 42(8):139-141. ZHAO J, BAI C, HU Y H, et al. Design of shipborne UAV inertial navigation positioning system based onBeidou satellite[J]. Ship Science and Technology, 2020, 42(8):139-141(in Chinese). [51] 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1):4-14. JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):4-14(in Chinese). [52] 杨世超, 梅林. 无方向性信标系统监测方法[J]. 中国无线电, 2019(5):59-61. YANG S C, MEI L. The monitoring method of directionless beacon system[J]. China Radio, 2019(5):59-61(in Chinese). [53] 徐敬舟, 刘新强, 陈明权. DME/VOR导航设备的应用研究[J]. 中国新技术新产品, 2019(11):8-9. XU J Z, LIU X Q, CHEN M Q.Application research of DME/VOR navigation equipment[J]. New Technology & New Products of China, 2019(11):8-9(in Chinese). [54] 刘贵行, 魏国, 赵世伟. 机载测距机测试平台设计与开发[J]. 现代电子技术, 2019, 42(11):165-168, 173. LIU G H, WEI G, ZHAO S W. Design and development of testing platform for airborne DME[J]. Modern Electronics Technique, 2019, 42(11):165-168, 173(in Chinese). [55] 查月. 舰艇惯性导航技术应用与展望[J]. 现代导航, 2017, 8(2):147-151. ZHA Y. Application and prospect of marine inertial navigation technology[J]. Modern Navigation, 2017, 8(2):147-151(in Chinese). [56] 韩剑辉, 许镇琳, 赵承利, 等. 船舶综合导航系统应用技术[J]. 天津大学学报, 2010, 43(2):121-125. HAN J H, XU Z L, ZHAO C L, et al. Application of marine integrated navigation system[J]. Journal of Tianjin University, 2010, 43(2):121-125(in Chinese). [57] 王玲, 张彬祥. 船舶通信导航技术及发展趋势[J]. 舰船电子工程, 2016, 36(3):17-21. WANG L, ZHANG B X. Development trend of marine communication and navigation technology[J]. Ship Electronic Engineering, 2016, 36(3):17-21(in Chinese). [58] 胡常青, 朱玮, 何远清, 等. 无人水面艇自主导航技术[J]. 导航与控制, 2019, 18(1):19-26, 90. HU C Q, ZHU W, HE Y Q, et al. Autonomous navigation technology of unmanned surface vehicle[J]. Navigation and Control, 2019, 18(1):19-26, 90(in Chinese). [59] DEL-RIO-RIVERA F, RAMÍREZ-RIVERA V M, DONAIRE A, et al. Robust trajectory tracking control for fully actuated marine surface vehicle[J]. IEEE Access, 2020, 8:223897-223904. [60] 宋丽君, 薛连莉, 董燕琴, 等. 全源定位与导航的发展与建议[J]. 导航与控制, 2017, 16(6):99-105, 24. SONG L J, XUE LL, DONG Y Q, et al. Development and suggestions of all sources position and navigation[J]. Navigation and Control, 2017, 16(6):99-105, 24(in Chinese). [61] PANDA M, DAS B, SUBUDHI B, et al. A comprehensive review of path planning algorithms for autonomous underwater vehicles[J]. International Journal of Automation and Computing, 2020, 17(3):321-352. [62] LI D L, WANG P, DU L. Path planning technologies forautonomous underwater vehicles-A review[J]. IEEE Access, 2019, 7:9745-9768. [63] WU Y H, TA XX, XIAO R C, et al. Survey of underwater robot positioning navigation[J]. Applied Ocean Research, 2019, 90:101845. [64] STUTTERS L, LIU HH, TILTMAN C, et al. Navigation technologies for autonomous underwater vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(4):581-589. [65] 郭银景, 孔芳, 张曼琳, 等. 自主水下航行器的组合导航系统综述[J]. 导航定位与授时, 2020, 7(5):107-119. GUO Y J, KONG F, ZHANG M L, et al. Review of integrated navigation system for AUV[J]. Navigation Positioning and Timing, 2020, 7(5):107-119(in Chinese). [66] ZHANG T W, TANG J L, QIN S J, et al. Review of navigation and positioning of deep-sea manned submersibles[J]. Journal of Navigation, 2019, 72(4):1021-1034. [67] XU Y Z, YU G Z, WU X K, et al. An enhanced viola-Jones vehicle detection method from unmanned aerial vehicles imagery[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7):1845-1856. [68] BIJJAHALLI S, SABATINI R, GARDI A. Advances in intelligent and autonomous navigation systems for small UAS[J]. Progress in Aerospace Sciences, 2020, 115:100617. [69] RUCCO A, SUJIT P B, AGUIAR A P, et al. Optimal rendezvous trajectory for unmanned aerial-ground vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2):834-847. [70] KONRAD T, GEHRT JJ, LIN J Y, et al. Advanced state estimation for navigation of automated vehicles[J]. Annual Reviews in Control, 2018, 46:181-195. [71] KOLAR P, BENAVIDEZ P, JAMSHIDI M. Survey ofdatafusion techniques for laser and vision based sensor integration for autonomous navigation[J]. Sensors, 2020, 20(8):2180. [72] LUO J X, YAN B W, WOOD K.InnoGPS for data-driven exploration of design opportunities and directions:The case of google driverless car project[J]. Journal of Mechanical Design, 2017, 139(11):111416. [73] GUL F, RAHIMAN W, NAZLI ALHADY SS. A comprehensive study for robot navigation techniques[J]. Cogent Engineering, 2019, 6(1):1632046. [74] BALTES J, KUNG D W, WANG W Y, et al. Adaptive computational SLAM incorporating strategies of exploration and path planning[J]. The Knowledge Engineering Review, 2019, 34:e23. [75] PAYÁ L, GIL A, REINOSO O. A state-of-the-art reviewon mapping and localization of mobile robots using omnidirectional vision sensors[J]. Journal of Sensors, 2017, 2017:1-20. [76] RUBIO F, VALERO F, LLOPIS-ALBERT C. A review of mobile robots:Concepts, methods, theoretical framework, and applications[J]. International Journal of Advanced Robotic Systems, 2019, 16(2):172988141983959. [77] KHALID S, ULLAH S, ALI N M, et al. Navigation aids in collaborative virtual environments:Comparison of 3DML, audio, textual, arrows-casting[J]. IEEE Access, 2019, 7:152979-152989. [78] 郑勇, 刘新江, 李崇辉. 发展单兵星敏导航装备的必要性及技术特点[J]. 航空学报, 2020, 41(8):623693. ZHENG Y, LIU X J, LI C H. Necessity and technical characteristics of developing single-soldier star sensor navigation equipment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):623693(in Chinese). [79] 刘公绪, 史凌峰. 室内导航与定位技术发展综述[J]. 导航定位学报, 2018, 6(2):7-14. LIU G X, SHI L F. An overview about development of indoor navigation and positioning technology[J]. Journal of Navigation and Positioning, 2018, 6(2):7-14(in Chinese). [80] DENG Z L, FU X, WANG H H. An IMU-aided body-shadowing error compensation method for indoor bluetooth positioning[J]. Sensors, 2018, 18(1):304. [81] CHEN P Z, KUANG Y, CHEN X Y. A UWB/improved PDR integration algorithm applied to dynamic indoor positioning for pedestrians[J]. Sensors, 2017, 17(9):2065. [82] 闫大禹, 宋伟, 王旭丹, 等. 国内室内定位技术发展现状综述[J]. 导航定位学报, 2019, 7(4):5-12. YAN D Y, SONG W, WANG X D, et al. Review of development status of indoor location technology in China[J]. Journal of Navigation and Positioning, 2019, 7(4):5-12(in Chinese). [83] 葛悦涛, 薛连莉, 李婕敏. 美国陆军PNT能力发展趋势分析[J]. 导航定位与授时, 2019, 6(2):12-18. GE Y T, XUE LL, LI J M. Analysis of the development trends of US army PNT capability[J]. Navigation Positioning and Timing, 2019, 6(2):12-18(in Chinese). [84] 费程羽, 苏中, 李擎. 行人惯性导航零速检测算法[J]. 传感器与微系统, 2016, 35(3):147-150, 153. FEI C Y, SU Z, LI Q. Zero velocity detection algorithm for pedestrian inertial navigation[J]. Transducer and Microsystem Technologies, 2016, 35(3):147-150, 153(in Chinese). [85] 王巍. 光纤陀螺惯性系统[M]. 北京:中国宇航出版社, 2010. WANG W. Fiber optic gyro inertial system[M]. Beijing:China Aerospace Publishing House, 2010(in Chinese). [86] SHOKRI S, RAHEMI N, MOSAVI M R. Improving GPS positioning accuracy using weighted Kalman Filter and variance estimation methods[J]. CEAS Aeronautical Journal, 2020, 11(2):515-527. [87] GONG X L, ZHANG J X, FANG J C. A modified nonlinear two-filter smoothing for high-precision airborne integrated GPS and inertial navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12):3315-3322. [88] 雷宏杰, 张亚崇. 机载惯性导航技术综述[J]. 航空精密制造技术, 2016, 52(1):7-12. LEI H J, ZHANG Y C. Review ofairborne inertial navigation technology[J]. Aviation Precision Manufacturing Technology, 2016, 52(1):7-12(in Chinese). [89] SYED Z F, AGGARWAL P, NIU X J, et al. Civilian vehicle navigation:Required alignment of the inertial sensors for acceptable navigation accuracies[J]. IEEE Transactions on Vehicular Technology, 2008, 57(6):3402-3412. [90] 张敏, 陈安升, 陈帅, 等. 基于运动约束辅助的车载惯性导航算法研究[J]. 自动化与仪器仪表, 2020(7):12-16. ZHANG M, CHEN A S, CHEN S, et al. Vehicle inertial navigation algorithm based on adaptive motion constraint assistance[J]. Automation & Instrumentation, 2020(7):12-16(in Chinese). [91] WANG D, XU X S, YAO Y Q, et al. A novel SINS/DVL tightly integrated navigation method for complex environment[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7):5183-5196. [92] 吴伟仁, 李骥, 黄翔宇, 等. 惯导/测距/测速相结合的安全软着陆自主导航方法[J]. 宇航学报, 2015, 36(8):893-899. WU W R, LI J, HUANG X Y, et al. INS/rangefinder/velocimetry based autonomous navigation method for safe landing[J]. Journal of Astronautics, 2015, 36(8):893-899(in Chinese). [93] 张礼廉, 屈豪, 毛军, 等. 视觉/惯性组合导航技术发展综述[J]. 导航定位与授时, 2020, 7(4):50-63. ZHANG LL, QU H, MAO J, et al. A survey of intelligence science and technology integrated navigation technology[J]. Navigation Positioning and Timing, 2020, 7(4):50-63(in Chinese). [94] 李群生, 赵剡, 王进达. 一种适用于高动态强干扰环境的视觉辅助微机械捷联惯性导航系统/全球定位系统超紧组合导航系统[J]. 兵工学报, 2019, 40(11):2241-2249. LI Q S, ZHAO Y, WANG J D. A vision aided MEMS-SINS/GPS ultra-tight coupled navigation system suitablefor high dynamic and strong interference environment[J]. Acta Armamentarii, 2019, 40(11):2241-2249(in Chinese). [95] NGUYEN T H, NGUYEN T M, XIE L H. Tightly-coupled ultra-wideband-aided monocular visual SLAM with degenerate anchor configurations[J]. Autonomous Robots, 2020, 44(8):1519-1534. [96] 马广富, 王伟, 张伟, 等. 面向小推力变轨的天文组合自主导航方法[J]. 宇航学报, 2020, 41(9):1166-1174. MA G F, WANG W, ZHANG W, et al. Integrated celestial autonomous navigation method for low thrust orbit maneuver[J]. Journal of Astronautics, 2020, 41(9):1166-1174(in Chinese). [97] 孙欢, 杨宾峰, 李驰, 等. 地磁导航中地磁传感器双噪声联合估计补偿方法[J]. 探测与控制学报, 2019, 41(5):90-95. SUN H, YANG B F, LI C, et al. Dual noise joint estimation and compensation method for geomagnetic sensors in geomagnetic navigation[J]. Journal of Detection & Control, 2019, 41(5):90-95(in Chinese). [98] LI H, LIU M Y, LIU K. Bio-inspired geomagnetic navigation method for autonomous underwater vehicle[J]. Journal of Systems Engineering and Electronics, 2017, 28(6):1203-1209. [99] YAN Z, MA J, TIAN J W. Accurate aerial object localization using gravity and gravity gradient anomaly[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1214-1217. [100] WANG D, XU X S, YAO Y Q, et al. A novel SINS/DVL tightly integrated navigation method for complex environment[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7):5183-5196. [101] NING X L, GUI M Z, ZHANG J, et al. Impact of the pulsar's direction on CNS/XNAV integrated navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6):3043-3055. [102] 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3):281-287. SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3):281-287(in Chinese). [103] CAI X W, ZHANG C X, YANG Y Q, et al. Data fusion method of measurement lag compensation formultirate MIMU/FOG/GNSS compound navigation[J]. IEEE Sensors Journal, 2020, 20(9):5048-5060. [104] 冯文帅. 高精度光纤陀螺发展综述[C]//第四届航天电子战略研究论坛论文集, 2018:80-83, 92. FENG W S. Overview of the development of high-precisionfiber optic gyroscopes[C]//Proceedings of the 4th Aerospace Electronics Strategic Research Forum, 2018:80-83, 92(in Chinese). [105] 李男男, 邢朝洋. 惯性微系统封装集成技术研究进展[J]. 导航与控制, 2018, 17(6):28-34. LI N N, XING C Y. Development of inertial micro-system packaging and integration technology[J]. Navigation and Control, 2018, 17(6):28-34(in Chinese). [106] BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588(7836):77-82. [107] 薛连莉, 戴敏, 葛悦涛, 等. 2018年国外惯性技术发展与回顾[J]. 飞航导弹, 2019(4):16-21. XUE L L, DAI M, GE Y T, et al. Development and review of foreign inertial technology in 2018[J]. Aerodynamic Missile Journal, 2019(4):16-21(in Chinese). [108] 王巍, 冯文帅, 于海成. 基于高灵敏超导探测器的新型脉冲光高精度光纤陀螺技术研究[J]. 导航与控制, 2020, 19(3):33-39, 58. WANG W, FENG W S, YU H C. Research on the novel pulsed light high-precision fiber optic gyroscope based on a high-sensitive superconducting detector[J]. Navigation and Control, 2020, 19(3):33-39, 58(in Chinese). [109] 王巍, 桑建芝, 刘院省. 非线性光学干涉仪的研究现状及发展趋势[J]. 导航与控制, 2020, 19(3):1-6, 13. WANG W, SANG J Z, LIU Y X. Research status and development trend of nonlinear optical interferometer[J]. Navigation and Control, 2020, 19(3):1-6, 13(in Chinese). |
[1] | 赵靖, 宋丹. 无人机GNSS/IMU组合导航系统完好性监测方法[J]. 航空学报, 2024, 45(7): 328943-328943. |
[2] | 杨卫平. 新一代飞行器导航制导与控制技术发展趋势[J]. 航空学报, 2024, 45(5): 529720-529720. |
[3] | 车沣竺, 米长伟, 张昊平, 张鑫. 基于标量化处理的协同航弹高精度导航系统[J]. 航空学报, 2023, 44(S1): 727632-727632. |
[4] | 王禹淞, 王奕迪, 郑伟. 太阳信息辅助的脉冲相位估计方法及导航应用[J]. 航空学报, 2023, 44(S1): 727651-727651. |
[5] | 邓小龙, 杨希祥, 朱炳杰, 麻震宇, 侯中喜. 智能平流层浮空器Loon关键技术分析与仿真[J]. 航空学报, 2023, 44(8): 127412-127412. |
[6] | 张大鹏, 呼延宗泊, 李恒年. 基于卫星实测数据的X射线脉冲星导航体制验证[J]. 航空学报, 2023, 44(3): 526510-526510. |
[7] | 张士峰, 李俊, 杨华波. 惯性制导工具误差分离技术综述[J]. 航空学报, 2023, 44(15): 528590-528590. |
[8] | 王涛, 高雪峰, 祝景萍, 董松, 孙连军, 郑侃. 机器人纵扭超声铣边颤振在线监测方法[J]. 航空学报, 2023, 44(13): 262-272. |
[9] | 孙洪驰, 穆荣军, 龙腾, 李寿鹏, 崔乃刚. 临近空间飞行器北斗/INS高动态深组合导航方法[J]. 航空学报, 2022, 43(9): 325672-325672. |
[10] | 王大轶, 侯博文, 王炯琦, 葛东明, 李茂登, 徐超, 周海银. 航天器自主导航状态估计方法研究综述[J]. 航空学报, 2021, 42(4): 524310-524310. |
[11] | 尹东亮, 黄晓颖, 吴艳杰, 何有宸, 谢经伟. 基于云模型和改进D-S证据理论的目标识别决策方法[J]. 航空学报, 2021, 42(12): 324768-324768. |
[12] | 宁晓琳, 梁晓钰, 吴伟仁, 房建成. 月球探测器天文测角/单程无线电时间差分测距/差分测速导航方法[J]. 航空学报, 2021, 42(11): 524531-524531. |
[13] | 李嘉兴, 王大轶, 鄂薇, 葛东明. 大动态干扰下基于光学图像的自主导航技术[J]. 航空学报, 2021, 42(11): 524907-524907. |
[14] | 张浩, 肖勇, 杨朝旭, 张睿, 许斌. 基于双状态卡方故障检测的组合导航系统[J]. 航空学报, 2020, 41(S2): 724271-724271. |
[15] | 关翔中, 蔡晨晓, 翟文华, 王磊, 邵鹏. 基于神经网络补偿的室内无人机组合导航系统[J]. 航空学报, 2020, 41(S1): 723790-723790. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2389
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 6452
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学