航空学报 > 2020, Vol. 41 Issue (4): 223384-223384   doi: 10.7527/S1000-6893.2019.23384

直升机后缘襟翼驱动器迟滞现象仿真与抑制

周金龙, 董凌华, 杨卫东   

  1. 南京航空航天大学 航空学院, 直升机旋翼动力学国家级重点实验室, 南京 210016
  • 收稿日期:2019-08-14 修回日期:2019-11-15 出版日期:2020-04-15 发布日期:2019-11-14
  • 通讯作者: 董凌华 E-mail:donglinghua@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(11402110);江苏高校优势学科建设工程资助项目

Hysteresis modeling and suppression of piezoelectric actuator for helicopter trailing-edge flaps

ZHOU Jinlong, DONG Linghua, YANG Weidong   

  1. National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2019-08-14 Revised:2019-11-15 Online:2020-04-15 Published:2019-11-14
  • Supported by:
    National Natural Science Foundation of China (11402110); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education(PAPD)

摘要: 直升机后缘襟翼多采用压电驱动器作为驱动元件,但是在使用过程中压电驱动器迟滞会对其振动控制性能产生不利影响,因此针对压电驱动器迟滞开展了迟滞建模与抑制研究。通过实验研究了压电驱动器在不同驱动频率下的迟滞特性,采用Bouc-Wen模型对驱动器迟滞现象进行了建模,并采用粒子群算法(PSO)辨识模型参数,与实际测量迟滞曲线进行了对比,在10~60 Hz范围内所建立的迟滞模型能够较为精确地描述压电驱动器迟滞现象。建立了基于Bouc-Wen逆模型的前馈补偿控制与PID反馈控制相结合的复合控制策略,实验结果显示该控制策略能够在10~60 Hz较宽的频率范围内有效抑制该压电驱动器迟滞现象。建立了考虑驱动器迟滞的主动控制后缘襟翼振动控制动力学模型,并对中等速度稳态前飞条件下后缘襟翼振动控制性能进行了仿真,仿真结果显示驱动器迟滞会在一定程度上削弱振动控制性能,而采用复合控制可以提高后缘襟翼旋翼振动控制性能。

关键词: 直升机, 旋翼, 后缘襟翼, 压电驱动器, 迟滞

Abstract: Piezoelectric actuators are used to drive trailing-edge flaps of helicopters, but hysteresis of these actuators can degrade the vibration control performance of the active rotor. To solve this problem, hysteresis modeling and suppression are studied for a piezoelectric actuator. The hysteresis curves of this actuator at different frequencies are measured, and the Bouc-Wen model is utilized to model its rate-dependent hysteresis. Particle Swarm Optimization (PSO) algorithm is selected to identify the unknown parameters of the Bouc-Wen model, and a good agreement is shown between experimental results and model outputs for a range of frequencies from 10 Hz to 60 Hz, demonstrating that the established model is capable of simulating the actuator’s dynamic hysteresis. A compound control scheme combining feedforward control based on inverse Bouc-Wen model and PID feedback control is established, and experimental results show that hysteresis of the piezoelectric actuator is suppressed remarkably at frequency range of 10 Hz to 60 Hz. Hysteresis model of the piezoelectric actuator is incorporated into helicopter rotor dynamic model to study the effect of actuator hysteresis on vibration control performance. Simulations of a model rotor with trailing-edge flaps are conducted in moderate speed forward flight condition. The results show that hysteresis can result in performance degradation of the trailing-edge flaps, while the compound control algorithm has the potential to improve the control authority of active rotor.

Key words: helicopter, rotor, trailing-edge flap, piezoelectric actuator, hysteresis

中图分类号: