[1] |
黄文虎,王心清,张景绘,等.航天柔性结构振动控制的若干新进展[J].力学进展, 1997, 27(1):5-18. HUANG W H, WANG X Q, ZHANG J H, et al. Some advances in the vibration control of aerospace flexible structures[J]. Advances in Mechanics, 1997, 27(1):5-18(in Chinese).
|
[2] |
陈勇,熊克,王鑫伟,等.飞行器智能结构系统研究进展与关键问题[J].航空学报, 2004, 25(1):21-25. CHEN Y, XIONG K, WANG X W. Progress and challenges in aeronautical smart structure systems[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(1):21-25.(in Chinese).
|
[3] |
刘东岳,万志强,杨超,等.大展弦比机翼总体刚度的气动弹性优化设计[J].航空学报, 2011, 32(6):1025-1031. LIU D Y, WAN Z Q, YANG C, et al. Aeroelastic optimization design of global stiffness for high aspect ratio wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1025-1031(in Chinese).
|
[4] |
高恒烜,王莹,李书,等.压电复合材料机翼振动控制研究[J].振动、测试与诊断, 2013, 33(S1):107-110. GAO H G, WANG Y, LI S, et al. Vibration control techniques research for piezo smart composite wing[J]. Journal of Vibration, Measurement&Diagnosis, 2013, 33(S1):107-110(in Chinese).
|
[5] |
段勇,陈前,林莎.颗粒阻尼对直升机旋翼桨叶减振效果的试验[J].航空学报, 2009, 30(11):2113-2118. DUAN Y, CHEN Q, LIN S. Experiments of vibration reduction effect of particle damping on helicopter rotor blade[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2113-2118(in Chinese).
|
[6] |
KRYLOV V V, TILMAN F J B S. Acoustic ‘black holes’ for flexural waves as effective vibration dampers[J]. Journal of Sound&Vibration, 2004, 274(3-5):605-619.
|
[7] |
KRYLOV V V, WINWARD R E T B. Experimental investigation of the acoustic black hole effect for flexural waves in tapered plate[J]. Journal of Sound and Vibration, 2007, 300(1-2):43-49.
|
[8] |
KRYLOV V V. New type of vibration dampers utilising the effect of acoustic ‘black holes’[J]. Acta Acustica united with Acustica, 2004, 90(5), 830-837.
|
[9] |
GEORGIEV V B, CUENCA J, GAUTIER F, et al. Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[J]. Journal of Sound and Vibration, 2011, 330(11):2497-2508.
|
[10] |
TANG L L, CHENG L. Enhanced acoustic black hole effect in beams with a modified thickness profile and extended platform[J]. Journal of Sound and Vibration, 2017, 391:116-126.
|
[11] |
BOWYER E P, O'BOY D J, KRYLOV V V, et al. Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile[J]. Applied Acoustics, 2012, 73(5):514-523.
|
[12] |
BOWYER E P, KRYLOV V V. Experimental investigation of damping flexural vibrations in glass fibre composite plates containing one-and two-dimensional acoustic black holes[J]. Composite Structures, 2014, 107:406-415.
|
[13] |
HASSAN S M. Free transverse vibration of elliptical plates of variable thickness with half of the boundary clamped and the rest free[J]. International Journal of Mechanical Sciences, 2004, 46(12):1861-1882.
|
[14] |
CONLON S C, FAHNLINE J B, SEMPERLOTTI F. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes[J]. The Journal of the Acoustical Society of America, 2015, 137(1):447-457.
|
[15] |
BOWYER E P, KRYLOV V V. Damping of flexural vibrations in turbofan blades using the acoustic black hole effect[J]. Applied Acoustics, 2014, 76:359-365.
|
[16] |
BOWYER E P, O'BOY D J, KRYLOV V V, et al. Experimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law profile[J]. Applied Acoustics, 2013, 74(4):553-560.
|
[17] |
KRYLOV V. Acoustic black holes:Recent developments in the theory and applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2014, 61(8):1296-1306.
|
[18] |
O'BOY D J, KRYLOV V V, KRALOVIC V. Damping of flexural vibrations in rectangular plates using the acoustic black hole effect[J]. Journal of Sound and Vibration, 2010, 2010(329):4672-4688.
|
[19] |
BOWYER E P, NASH P, KRYLOV V V. Damping of flexural vibrations in glass fiber composite plates and honeycomb sandwich panels containing indentations of power-law profile[J]. Journal of the Acoustical Society of America, 2013, 132(3):2041.
|
[20] |
LI X, DING Q. Analysis on vibration energy concentration of the one-dimensional wedge-shaped acoustic black hole structure[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(10):2137-2148.
|
[21] |
曾鹏云,郑玲,左益芳,等.基于半解析法的一维圆锥形声学黑洞梁能量聚集效应研究[J].噪声与振动控制, 2018, 38(S1):210-214. ZENG P Y, ZHENG L, ZUO Y F, et al. Analysis of the energy concentration effect of flexural vibrations in tapered rods with power-law profile based on semi-analytical method[J]. Noise and Vibration Control, 2018, 38(S1):210-214(in Chinese).
|
[22] |
TANG L L, CHENG L. Ultrawide band gaps in beams with double-leaf acoustic black hole indentations[J]. The Journal of the Acoustical Society of America, 2017, 142(5):2802-2807.
|
[23] |
ZHOU T, TANG L L, JI H L, et al. Dynamic and static properties of double-layered compound acoustic black hole structures[J]. International Journal of Applied Mechanics, 2017, 9(5):1750074.
|
[24] |
JACQUOT R G. Suppression of random vibration in plates using vibration absorbers[J]. Journal of Sound and Vibration, 2001, 248(4):585-596.
|