黄云, 肖贵坚, 邹莱
收稿日期:
2018-07-02
修回日期:
2018-07-23
出版日期:
2019-03-15
发布日期:
2018-08-16
通讯作者:
肖贵坚
E-mail:xiaoguijian@cqu.edu.cn
基金资助:
HUANG Yun, XIAO Guijian, ZOU Lai
Received:
2018-07-02
Revised:
2018-07-23
Online:
2019-03-15
Published:
2018-08-16
Supported by:
摘要: 航空发动机叶片的型面精度及表面完整性对其疲劳寿命和气流动力性等影响巨大。机器人砂带磨削由于其灵活性好、易于调度、通用性强等特点成为提高叶片表面完整性的有效加工方法之一,但是工业机器人一般仅适用于粗加工,而对于半精加工以及精加工,提高机器人的定位精度是决定加工质量的关键问题。因此,对航空发动机叶片机器人砂带磨削研究现状进行归纳总结,为实现叶片精密磨削提供参考。首先,对叶片机器人砂带磨削系统的组成和结构形式进行了论述,从磨削接触廓形、材料去除规律和表面完整性等方面对砂带磨削机理进行了分析;其次,分别从基于CAD模型、数学模型和人工知识学习三方面总结了叶片机器人砂带磨削轨迹规划方法;然后,对叶片机器人砂带磨削运动控制技术研究进行了介绍,并分析了叶片机器人砂带磨削系统及集成技术;最后,对航空发动机叶片机器人砂带磨削研究现状进行了总结,在此基础上对其发展趋势进行了分析。
中图分类号:
黄云, 肖贵坚, 邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报, 2019, 40(3): 22508-022508.
HUANG Yun, XIAO Guijian, ZOU Lai. Current situation and development trend of robot precise belt grinding for aero-engine blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 22508-022508.
[1] 黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报, 2016, 37(7):2045-2064. HUANG Y, XIAO G J, ZOU L. Current situation and development trend of polishing technology for blisk[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2045-2064(in Chinese). [2] 郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报, 2014, 50(11):119-134. GUO D M, SUN Y W, JIA Z Y. Methods and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering, 2014, 50(11):119-134(in Chinese). [3] 王增强. 先进航空发动机关键制造技术[J]. 航空制造技术, 2015, 492(22):34-38. WANG Z Q. Key manufacturing technology of advanced aero-engine[J]. Aeronautical Manufacturing Technology, 2015, 492(22):34-38(in Chinese). [4] 史耀耀, 段继豪, 张军峰, 等. 整体叶盘制造工艺技术综述[J]. 航空制造技术, 2012, 399(3):26-31. SHI Y Y, DUAN J H, ZHANG J F, et al. Blisk disc manufacturing process technology[J]. Aeronautical Manufacturing Technology, 2012, 399(3):26-31(in Chinese). [5] 陈贵林, 赵春蓉. 航空发动机精锻叶片数字化生产线[J]. 航空制造技术, 2015(22):78-83. CHEN G L, ZHAO C R. Digital production line of precision forging aero-engine blade[J]. Aeronautical Manufacturing Technology, 2015(22):78-83(in Chinese). [6] WILLIAMS R E, MELTON V L. Abrasive flow finishing of stereo lithography prototypes[J]. Rapid Prototyping Journal, 1998, 4(2):56-67. [7] 高航, 吴鸣宇, 付有志, 等. 流体磨料光整加工理论与技术的发展[J]. 机械工程学报, 2015, 51(7):174-187. GAO H, WU M Y, FU Y Z, et al. Development of theory and technology in fluid abrasive finishing technology[J]. Journal of Mechanical Engineering, 2015, 51(7):174-187(in Chinese). [8] TAHVILIAN A M, LIU Z H, CHAMPLIAUD H, et al. Characterization of grinding wheel grain topography under different robotic grinding conditions using confocal microscope[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5-8):1159-1171. [9] SRIVASTAVA A K, ULRICH B J, ELBESTAWI M A. Analysis of rigid-disk wear during robotic grinding[J]. International Journal of Machine Tools and Manufacture, 1990, 30(4):521-534. [10] 段继豪, 史耀耀, 张军锋, 等. 航空发动机叶片柔性抛光技术[J]. 航空学报, 2012, 33(3):573-578. DUAN J H, SHI Y Y, ZHANG J F, et al. Flexible polishing technology for blade of aviation engine[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):573-578(in Chinese). [11] XIAO G J, HUANG Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):1697-1706. [12] 蔺小军, 杨艳, 吴广, 等. 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报, 2015, 36(6):2074-2082. LIN X J, YANG Y, WU G, et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2074-2082(in Chinese). [13] WANG W, YUN C. A path planning method for robotic belt surface grinding[J]. Chinese Journal of Aeronautics, 2011, 24(4):520-526. [14] XIAO G J, HUANG Y. Experimental research and modelling of life-cycle material removal in belt finishing for titanium alloy[J]. Journal of Manufacturing Processes, 2017, 30:255-267. [15] XIAO G J, HUANG Y, WANG J. Path planning method for longitudinal micro-marks on blisk root-fillet with belt grinding[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1-4):797-810. [16] WANG L, WU J, LI T, et al. A study on the dynamic characteristics of the 2-DOF redundant parallel manipulator of a hybrid machine tool[J]. International Journal of Robotics and Automation, 2015, 30(2):344-350. [17] WANG L, WU J, WANG J, et al. An experimental study of a redundantly actuated parallel manipulator for a 5-DOF hybrid machine tool[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(1):72-81. [18] XU B S, DONG S Y, ZHU S, et al. Prospects and developing of remanufacture forming technology[J]. Journal of Mechanical Engineering, 2012, 48(15):96-105. [19] ECKART U, FLORIAN H. Improving efficiency in robot assisted belt grinding of high performance materials[J]. Advanced Materials Research, 2014, 907:139-149. [20] ECKART U, FLORIAN H, MARCEL M, et al. Applicability of industrial robots for machining and repair processes[J]. Procedia CIRP, 2013, 11:234-238. [21] WHITTON S. Adaptive robot grinding improves turbine blade repair[J]. Industrial Robot:An International Journal, 2003, 30(4):https://doi.org/10.1108/ir.2003.04930daf.002. [22] WU J, WANG J, WANG L, et al. Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy[J]. Mechanism and Machine Theory, 2009, 44(2):289-305. [23] WU J, WANG J, WANG L, et al. Dynamic model and force control of the redundantly actuated parallel manipulator of a 5-DOF hybrid machine tool[J]. Robotica, 2008, 27(1):59-65. [24] 杨旭. 新型叶片混联抛磨机床及其关键技术研究[D]. 长春:吉林大学, 2010:16-18. YANG X. Research on the key technology of a novel hybrid grinding and polishing machine tool for blade finishing[D]. Changchun:Jilin University, 2010:16-18(in Chinese). [25] XU L L, TIAN W Y, MAO E. Impedance control of wind turbine blade grinding robot[J]. Applied Mechanics and Materials, 2011:1203-1207. [26] XIE S B, LI S, CHEN B, et al. Research on robot grinding technology considering removal rate and roughness[J]. Intelligent Robotics and Applications, 2017:79-90. [27] 任旭. 机器人砂带磨削航发叶片关键技术研究[D]. 重庆:重庆大学, 2017:6-7. REN X. Research on the key technology in robot belt grinding of aero-engine blade[D]. Chongqing:Chongqing University, 2017:6-7(in Chinese). [28] BLUM H, SUTTMEIER F T. An adaptive finite element discretisation for a simplified Signorini problem[J]. Calcolo, 2000, 37(2):65-77. [29] REN X, KUHLENKÖTTER B. Real-time simulation and visualization of robotic belt grinding processes[J]. International Journal of Advanced Manufacturing Technology, 2008, 35(11-12):1090-1099. [30] ZHANG X, KUHLENKÖTTER B, KNEUPNER K. An efficient method for solving the Signorini problem in the simulation of free-form surfaces produced by belt grinding[J]. International Journal of Machine Tools & Manufacture, 2005, 45(6):641-648. [31] WANG W, LIU F, LIU Z H, et al. Prediction of depth of cut for robotic belt grinding[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1-4):699-708. [32] REN X Y, MUELLER H, KUHLENKOETTER B. Surfel-based surface modeling for robotic belt grinding simulation[J]. Journal of Zhejiang University Science A, 2017, 7(7):1215-1224. [33] REN X, KUHLENKÖTTER B, MÜLLER H. Simulation and verification of belt grinding with industrial robots[J]. International Journal of Machine Tools & Manufacture, 2006, 46(7):708-716. [34] REN X, CABARAVDIC M, ZHANG X, et al. A local process model for simulation of robotic belt grinding[J]. International Journal of Machine Tools & Manufacture, 2007, 47(6):962-970. [35] 张雷, 袁楚明, 陈幼平, 等. 模具曲面抛光时表面去除的建模与试验研究[J]. 机械工程学报, 2002, 38(12):98-102. ZHANG L, YUAN C M, CHEN Y P, et al. Modeling and experiment of material removal in polishing on mold curved surfaces[J]. Journal of Mechanical Engineering, 2002, 38(12):98-102(in Chinese). [36] WANG Y J, HUANG Y, CHEN Y X, et al. Model of an abrasive belt grinding surface removal contour and its application[J]. International Journal of Advanced Manufacturing Technology, 2015, 82(9-12):2113-2122. [37] SUN Y, VU T T, HALIL Z, et al. Material removal prediction for contact wheels based on a dynamic pressure sensor[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(1-4):945-951. [38] AGUSTINA B, MARIN M M, TETI R, et al. Surface roughness evaluation based on acoustic emission signals in robot assisted polishing[J]. Sensors, 2014,14(11):21514-21522. [39] WU S H, KAZEROUNIAN K, GAN Z X, et al. A simulation platform for optimal selection of robotic belt grinding system parameters[J]. International Journal of Advanced Manufacturing Technology, 2013, 64(1-4):447-458. [40] RAFIEIAN F, HAZEL B, LIU Z H. Vibro-impact dynamics of material removal in a robotic grinding process[J]. International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):949-972. [41] CHEN J Q, CHEN H B, XU J J, et al. Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2018:https://doi.org/10.1007/s00170-018-2270-9. [42] ZHANG X Q, CHEN H B, XU J J, et al. A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine[J]. Journal of Materials Processing Technology, 2018, 260:9-19. [43] ZHU D H, LUO S Y, YANG L, et al. On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys[J]. Tribology International, 2015, 90:55-59. [44] SONG Y X, LIANG W, YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing, 2012, 23(5):1903-1913. [45] 刘斐, 王伟, 王雷, 等. 接触轮变形对机器人砂带磨削深度的影响[J]. 机械工程学报, 2017, 53(5):86-92. LIU W, WANG W, WANG L, et al. Effect of contact wheel's deformation on cutting depth for robotic belt grinding[J]. Journal of Mechanical Engineering, 2017, 53(5):86-92(in Chinese). [46] 吕洪波, 宋亦旭, 贾培发. 机器人修磨中融合先验知识的适应学习建模方法[J]. 机器人, 2011, 33(6):641-648. LV H B, SONG Y X, JIA P F. Incorporation of prior knowledge in adaptive learning for modeling the robotic profile grinding[J]. Robot, 2011, 33(6):641-648(in Chinese). [47] 杨扬, 宋亦旭, 梁伟, 等. 基于SVM的机器人高精度磨削建模[J]. 机器人, 2010, 32(2):278-282. YANG Y, SONG Y X, LIANG W, et al. Modeling for robot high precision grinding based on SVM[J]. Robot, 2010, 32(2):278-282(in Chinese). [48] SONG Y X, YANG H J, LV H B. Intelligent control for a robot belt grinding system[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3):716-724. [49] 吕洪波. 机器人智能修磨方法研究[D]. 北京:清华大学, 2011:9-10. LV H B. Research on intelligent method for robotic profile belt grinding[D]. Beijing:Tsinghua University, 2011:9-10(in Chinese). [50] FERNANDEZ A, JOSE A D, JAVIERRE C, et al. Surface roughness evolution model for finishing using an abrasive tool on a robot[J]. International Journal of Advanced Robotic Systems, 2015, 12(9):119-122. [51] ERIKSEN R S, ARENTOFT M, GRONBAK J, et al. Manufacture of functional surfaces through combined application of tool manufacturing processes and robot assisted polishing[J]. CIRP Annals-Manufacturing Technology, 2012, 61(1):563-566. [52] SEGRETO T, KARAM S, TETI R. Signal processing and pattern recognition for surface roughness assessment in multiple sensor monitoring of robot-assisted polishing[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):1023-1033. [53] JOURANI A, DURSAPT M, HAMDI H, et al. Effect of the belt grinding on the surface texture:Modeling of the contact and abrasive wear[J]. Wear, 2005, 259(7):1137-1143. [54] BIGERELLE M, GAUTIER A, HAGEGE B, et al. Roughness characteristic length scales of belt finished surface[J]. Journal of Materials Processing Technology, 2009, 209(20):6103-6116. [55] BIGERELLE M, GAUTIER A, HAGEGE B. Mechanical modelling of micro-scale abrasion in superfinish belt grinding[J]. Tribology International, 2008, 41(11):992-1001. [56] PANDIYAN V, TJAHJOWIDODO T, SAMY M P. In-process surface roughness estimation model for compliant abrasive belt machining process[J]. Procedia CIRP, 2016, 46:254-257. [57] 叶潇潇. 航发钛合金叶片数控砂带磨削表面完整性研究[D]. 重庆:重庆大学, 2013:7-8. YE X X. Study on the surface integrity of titanium blade processed by CNC abrasive belt grinding[D]. Chongqing:Chongqing University, 2013:7-8(in Chinese). [58] XIAO G J, HUANG Y. Adaptive belt precision grinding for the weak rigidity deformation of blisk leading and trailing edge[J]. Advances in Mechanical Engineering, 2017, 9(10):1-12. [59] HUANG Y, XIAO G J, ZHAO H Q, et al. Residual stress of belt polishing for the micro-stiffener surface on the titanium alloys[J]. Procedia CIRP, 2018, 71:11-15. [60] ZHAO T, SHI Y Y, LIN X J, et al. Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(5):653-663. [61] LI W L, XIE H, ZHANG G, et al. 3-D shape matching of a blade surface in robotic grinding applications[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2294-2306. [62] LI S Q, XIE X P, YIN L T. Research on robotic trajectory automatic generation method for complex surface grinding and polishing[J]. Lecture Notes in Computer Science, 2014, 8918:124-135. [63] HUANG H, GONG Z, CHEN X, et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Material Process Technology, 2002, 127(2):140-145. [64] HUANG H, GONG Z, CHEN X, et al. Smart robotic system for profile turbine vane airfoil repair[J]. Journal of Advanced Manufacturing Technology, 2003, 21(4):275-283. [65] 韩光超, 孙明, 张海鸥, 等. 基于CAM的机器人抛光轨迹规划[J]. 华中科技大学学报(自然科学版), 2008, 36(5):60-62. HAN G C, SUN M, ZHANG H O, et al. Polishing path planning for industrial robots using CAM software[J]. Journal Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(5):60-62(in Chinese). [66] 赵扬, 赵继, 张雷, 等. 基于逆向工程的机器人磨削叶片[J]. 吉林大学学报(工学版), 2009, 39(5):1176-1180. ZHAO Y, ZHAO J, ZHANG L, et al. Robotic blade grinding based on reverse engineering[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(5):1176-1180(in Chinese). [67] 宋江波. 航发精锻冷辊轧叶片进排气边缘磨削加工技术研究[D]. 沈阳:沈阳工业大学, 2017:8-9. SONG J B. Research on grinding process of leading and trailing edges of aero engine precision forged cold rolled blade[D]. Shenyang:Shenyang University of Technology, 2017:8-9(in Chinese). [68] MAO Y Y, ZHAO H, ZHAO X, et al. Trajectory and force generation with multi-constraints for robotic belt grinding[J]. Intelligent Robotics and Applications, 2017:14-23. [69] ZHANG X, CABARAVDIC M, KNEUPNER K, et al. Real-time simulation of robot controlled belt grinding processes of sculptured surfaces[J]. International Journal of Advanced Robotic Systems, 2004, 1(1):109-114. [70] KHARIDEGE A, TING D T, ZHANG Y J.A practical approach for automated polishing system of free-form surface path generation based on industrial arm robot[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):3921-3934. [71] 王伟, 贠超, 张令. 机器人砂带磨削的曲面路径优化算法[J]. 机械工程学报, 2011, 47(7):8-15. WANG W, YUN C, ZHANG L. Optimization algorithm for robotic belt surface grinding process[J]. Journal of Mechanical Engineering, 2011, 47(7):8-15(in Chinese). [72] 郭彤颖, 曲道奎. 一种基于遗传算法的机器人加工路径规划方法[J]. 华中科技大学学报(自然科学版), 2004, 32(S1):123-125. GUO T Y, QU D K. A method of machining path planning for robot based on genetic algorithm[J]. Journal Huazhong University of Science and Technology (Natural Science Edition), 2004, 32(S1):123-125(in Chinese). [73] 万从保. 航空发动机整体叶盘机器人磨抛加工关键技术研究[D]. 成都:电子科技大学, 2017:7-8. WAN C B. Research on the key technology of robot polishing for aero engine blisk[D]. Chengdu:University of Electronic Science and Technology, 2017:7-8(in Chinese). [74] 张海洋. 叶片砂带磨削机器人轨迹规划与离线编程[D]. 武汉:华中科技大学, 2014:7-8. ZHANG H Y. Robotic trajectory planning and off-line programming for belt grinding of turbine blade[D]. Wuhan:Huazhong University of Science and Technology, 2014:7-8(in Chinese). [75] 陈巍. 点云匹配技术在机器人砂带磨削系统中的应用研究[D]. 武汉:华中科技大学, 2014:10-11. CHEN W. The application research of point registration in the robotic belt grinding system[D]. Wuhan:Huazhong University of Science and Technology, 2014:10-11(in Chinese). [76] 徐文秀, 史耀耀. 整体叶盘机器人自动化抛光技术[J]. 机械设计, 2010, 27(7):47-50. XU W X, SHI Y Y. Automatic polishing technology of blisk robot[J]. Journal of Machine Design, 2010, 27(7):47-50(in Chinese). [77] NG W X, CHAN H K, TEO W K, et al. Capturing the tacit knowledge of the skilled operator to program tool paths and tool orientations for robot belt grinding[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(5-8):1599-1618. [78] NG W X, CHAN H K, TEO W K, et al. Programming a robot for conformance grinding of complex shapes by capturing the tacit knowledge of a skilled operator[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2):1020-1030. [79] LV H, SONG Y, JIA P, et al. An adaptive modeling approach based on ESN for robotic belt grinding[C]//IEEE International Conference on Information & Automation, 2010:787-792. [80] LV H, SONG Y, JIA P. Parameter optimization using PSO for ESN-based robotic belt grinding modeling[C]//International Workshop on Intelligent Systems & Applications, 2011:1-4. [81] ZHU D H, XU X H, YANG Z Y, et al. Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments[J]. Tribology International, 2018, 120:93-98. [82] TIAN F J, LI Z G, LV C, et al. Polishing pressure investigations of robot automatic polishing on curved surfaces[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(1-4):639-646. [83] TIAN F J, LV C, LI Z G, et al. Modeling and control of robotic automatic polishing for curved surfaces[J]. CIRP Journal of Manufacturing Science and Technology, 2016, 14:55-64. [84] RAFIEIAN F, GIRARDIN F, LIU Z H, et al. Angular analysis of the cyclic impacting oscillations in a robotic grinding process[J]. Mechanical Systems and Signal Processing, 2014, 44(1-2):160-176. [85] SUN Y Q, GIBLIN D J, KAZEROUNIAN K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25:204-210. [86] MOHAMMAD A EI K, HONG J, WANG D W. Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49:54-65. [87] ZHAO P, SHI Y. Composite adaptive control of belt polishing force for aero-engine blade[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5):988-996. [88] 倪小波, 金德闻, 张济川. 粗糙表面的机器人磨削实验与分析[J]. 中国机械工程, 2004, 15(22):12-15. NI X B, JIN D W, ZHANG J C. Experimental investigation on rough surfaces grinded by a robotic arm[J]. China Mechanical Engineering, 2004, 15(22):12-15(in Chinese). [89] 韩光超, 孙明. 基于轨迹控制的机器人抛光工艺[J]. 华中科技大学学报(自然科学版), 2009, 37(2):75-77, 84. HAN G C, SUN M. Path control-based robotic polishing technology[J]. Journal Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(2):75-77, 84(in Chinese). [90] 刘志恒. 基于力反馈的打磨机器人控制系统研究[D]. 哈尔滨:哈尔滨工业大学, 2017:9-10. LIU Z H. Research on grinding robot control system based on force feedback[D]. Harbin:Harbin Institute of Technology, 2017:9-10(in Chinese). [91] 李振国. 基于柔顺控制的复杂曲面机器人自动抛磨技术研究[D]. 沈阳:沈阳理工大学, 2017:9-10. LI Z G. Study on robotic automatic grinding for freeform surfaces based on compliance control[D]. Shenyang:Shenyang Ligong University, 2017:9-10(in Chinese). [92] 李闯. 抛磨机器人力反馈装置设计与实验研究[D]. 苏州:苏州大学, 2016:11-13. LI C. The design and experimental research of force feedback device in a grinding and polishing robot[D]. Suzhou:Suzhou University, 2016:11-13(in Chinese). [93] 杨龙. 机器人砂带磨抛力建模及其在钛合金叶片加工中的应用[D]. 武汉:华中科技大学, 2015:10-11. YANG L. Grinding force modeling and experimental research in robot-assisted belt grinding titanium alloy blade[D]. Wuhan:Huazhong University of Science and Technology, 2015:10-11(in Chinese). [94] 刘文波. 基于力控制方法的工业机器人磨削研究[D]. 广州:华南理工大学, 2014:8-9. LIU W B. Research on industrial robot grinding based on force control[D]. Guangzhou:South China University of Technology, 2014:8-9(in Chinese). [95] 邓暘. 抛光机器人末端气动执行机构的接触力控制[D]. 哈尔滨:哈尔滨工业大学, 2016:7-8. DENG Y. Force control of polishing robot end pneumatic actuator[D]. Harbin:Harbin Institute of Technology, 2016:7-8(in Chinese). [96] 蔡得领. 机器人砂带磨抛控制系统设计[D]. 武汉:华中科技大学, 2014:6-7. CAI D L. Control system design of robotic belt-polishing[D]. Wuhan:Huazhong University of Science and Technology, 2014:6-7(in Chinese). [97] 王淼. 抛光打磨机器人控制系统的设计与实现[D]. 广州:广东工业大学, 2016:5-6. WANG M. Design and implementation of control system for polishing robot[D]. Guangzhou:Guangdong University of Technology, 2016:5-6(in Chinese). [98] XU X H, ZHU D H, ZHANG H Y, et al. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):635-647. [99] LI W L, XIE H, ZHANG G, et al. Hand-eye calibration in visually-guided robot grinding[J]. IEEE Transactions on Cybernetics, 2016, 46(11):2634-2642. [100] XIAO G J, HUANG Y, YIN J C. An integrated polishing method for compressor blade surfaces[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(5-8):1723-1733. [101] XIAO G J, HUANG Y. Constant-load adaptive belt polishing of the weak-rigidity blisk blade[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(9-12):1473-1484. [102] WANG W, YUN C, ZHANG L, et al. Designing and optimization of an off-line programming system for robot belt grinding process[J]. Chinese Journal of Mechanical Engineering, 2011, 24(4):647-655. [103] ZHANG D, YUN C, ZHANG L. Fixture optimization for robotic belt grinding system[J]. Applied Mechanics and Materials, 2011, 121-126:2030-2034. [104] LIANG W, SONG Y X, LV H B, et al. An effective trajectory optimization method for robotic belt grinding based on intelligent algorithm[C]//2010 IEEE International Conference on Robotics and Biomimetics (ROBIO 2010), 2010:1142-1147. [105] SONG Y X, LV H B, YANG Z H. An adaptive modeling method for a robot belt grinding process[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(2):309-317. [106] 赵庆江. 面向磨削的机器人参数标定与离线编程研究[D]. 哈尔滨:哈尔滨工业大学, 2015:7-8. ZHAO Q J. Research on robot parameter calibration and offline programming for grinding[D]. Harbin:Harbin Institute of Technology, 2015:7-8(in Chinese). [107] 齐立哲, 甘中学, 贠超, 等. 机器人砂带磨削系统作业精度分析与误差补偿[J]. 机器人, 2010, 32(6):787-791, 798. QI L Z, GAN Z X, YUN C, et al. Working accuracy analysis and error compensation for robotic belt grinding system[J]. Robot, 2010, 32(6):787-791, 798(in Chinese). [108] 王伟, 贠超, 孙坤, 等. 机器人修形磨削工具坐标系的精确标定方法[J]. 北京航空航天大学学报, 2009, 35(6):741-746. WANG W, YUN C, SUN K, et al. Accurate tool calibration for robotic conformance grinding system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6):741-746(in Chinese). [109] 赵扬. 机器人磨削叶片关键技术研究[D]. 长春:吉林大学, 2009:15-16. ZHAO Y. Research on key technology of robotic blade grinding[D]. Changchun:Jilin University, 2009:15-16(in Chinese). [110] 李勇华. 叶片机器人磨抛软件系统关键技术开发与集成[D]. 武汉:华中科技大学, 2015:8-9. LI Y H. Development and integration of key technologies of the blade robotic belt-grinding software[D]. Wuhan:Huazhong University of Science and Technology, 2015:8-9(in Chinese). [111] 吴青海. 叶片砂带磨削系统的建立及叶片磨削研究[D]. 沈阳:东北大学, 2013:11-12. WU Q H. The system creation of belt grinding for blade and research of belt grinding[D]. Shenyang:Northeastern University, 2013:11-12(in Chinese). [112] VAHRENKAMP N, ASFOUR T. Representing the robot's workspace through constrained manipulability analysis[J]. Autonomous Robots, 2015, 38(1):17-30. [113] ROBERTS R G. The dexterity and singularities of an underactuated robot[J]. Journal of Robotic Systems, 2001,18(4):159-169. [114] GOSSELIN C M. Dexterity indices for planar and spatial robotic manipulators[C]//1990 IEEE International Conference on Robotics and Automation (ICRA), 1990:650-665. [115] GOSSELIN C, ANGELES J. A global performance index for the kinematic optimization of robotic manipulators[J]. Journal of Mechanical Design, 1991, 113(3):220-226. [116] PARK F C, BROCKEET R W. Kinematic dexterity of robotic mechanisms[J]. The International Journal of Robotics Research, 1994, 13(1):1-15. [117] TCHON K, ZADAMOWSKA K. Kinematic dexterity of mobile manipulators:An endogenous configuration space approach[J]. Robotica, 2003, 21(5):521-530. [118] GAO Z H, LAN X D, BIAN Y S. Structural dimension optimization of robotic belt grinding system for grinding workpieces with complex shaped surfaces based on dexterity grinding space[J]. Chinese Journal of Aeronautics, 2011, 24(3):346-354. [119] ZHANG D, YUN C, SONG D Z. Dexterous space optimization for robotic belt grinding[J]. Procedia Engineering, 2011, 15:2762-2766. [120] 张栋, 贠超, 宋德政, 等. 基于正交试验法的3P3R磨削机器人灵活性优化[J]. 北京航空航天大学学报, 2010, 36(9):1075-1079. ZHANG D, YUN C, SONG D Z, et al. Dexterity optimization based on orthogonal test of 3P3R grinding robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9):1075-1079(in Chinese). [121] 王伟, 贠超. 砂带磨削机器人的灵活性分析与优化[J]. 机器人, 2010, 32(1):48-54. WANG W, YUN C. Dexterity analysis and optimization of belt grinding robot[J]. Robot, 2010, 32(1):48-54(in Chinese). [122] 马良. 叶片机器人砂带磨削系统数字样机建立与分析[D]. 沈阳:东北大学, 2014:5-6. MA L. Research on the digital prototype modeling and analysis of robotic belt grinding system for blades[D]. Shenyang:Northeastern University, 2014:5-6(in Chinese). |
[1] | 刘哲, 张羲格, 韦常柱, 崔乃刚. 亚轨道飞行器再入轨迹高精度自适应凸规划[J]. 航空学报, 2023, 44(S2): 729430-729430. |
[2] | 董豪泽, 陈昱达, 刘丹, 李忠奎. 障碍物空间下分布式轨迹规划的死锁破解[J]. 航空学报, 2023, 44(S2): 729771-729771. |
[3] | 万能, 庄其鑫, 郭彦亨, 常智勇, 王道. 拟合精度约束下航发叶片在机测量采样策略[J]. 航空学报, 2023, 44(7): 427151-427151. |
[4] | 冉庆波, 肖鸿, 杨富鸿, 段玉岗. 含孔曲面自动铺丝轨迹规划算法[J]. 航空学报, 2022, 43(9): 425602-425602. |
[5] | 孙杨, 昌敏, 白俊强. 微小型四旋翼无人机垂面栖停轨迹规划与控制[J]. 航空学报, 2022, 43(9): 325756-325756. |
[6] | 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 525587-525587. |
[7] | 徐广通, 王祝, 曹严, 孙景亮, 龙腾. 动态优先级解耦的无人机集群轨迹分布式序列凸规划[J]. 航空学报, 2022, 43(2): 325059-325059. |
[8] | 孙昊, 孙青林, 滕海山, 周朋, 陈增强. 复杂环境下考虑动力学约束的翼伞轨迹规划[J]. 航空学报, 2021, 42(3): 324301-324301. |
[9] | 胡军, 李毛毛. 航天器进入制导方法综述[J]. 航空学报, 2021, 42(11): 525048-525048. |
[10] | 刘哲, 陆浩然, 郑伟, 闻国光, 王奕迪, 周祥. 多滑翔飞行器时间协同轨迹快速规划[J]. 航空学报, 2021, 42(11): 524497-524497. |
[11] | 邓云山, 夏元清, 孙中奇, 沈刚辉. 扰动环境下火星精确着陆自主轨迹规划方法[J]. 航空学报, 2021, 42(11): 524834-524834. |
[12] | 赵毓, 管公顺, 郭继峰, 于晓强, 颜鹏. 基于多智能体强化学习的空间机械臂轨迹规划[J]. 航空学报, 2021, 42(1): 524151-524151. |
[13] | 葛佳昊, 刘莉, 董欣心, 田维勇, 陆天和. 基于动力学RRT*的自由漂浮空间机器人轨迹规划[J]. 航空学报, 2021, 42(1): 523877-523877. |
[14] | 耿远卓, 李传江, 郭延宁, James Douglas BIGGS. 单推力航天器交会对接轨迹规划及跟踪控制[J]. 航空学报, 2020, 41(9): 323880-323880. |
[15] | 王晶, 罗明, 张定华, 陈冰. 自由曲面侧铣刀具轮廓与轨迹同步优化方法[J]. 航空学报, 2020, 41(11): 423720-423720. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学