[1] Huang L, Duan Z S, Yang J Y. Challenges of control science in near space hypersonic aircrafts[J]. Control Theory & Applications, 2011, 28(10): 1496-1505 (in Chinese). 黄琳, 段志生, 杨剑影. 近空间高超声速飞行器对控制科学的挑战[J]. 控制理论与应用, 2011, 28(10): 1496-1505.
[2] Ohlmeyer E J, Menon P K, Kim J. Tracking of spiraling reentry vehicles with varying frequency using the unscented Kalman filter[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 2-5.
[3] Gao Y H, Wang P, Li J L, et al. Optical imaging guidance technology in complicated battlefield environment[J]. Modern Defence Technology, 2012, 40(1): 6-10 (in Chinese). 高颖慧, 王平, 李君龙, 等. 复杂战场环境下的防空反导光学成像制导技术[J]. 现代防御技术, 2012, 40(1): 6-10.
[4] Anderson J C, Downs G S, Trepagnier P C. Signal processor for space-based visible sensing[C]//SPIE Proceedings. Bellingham, WA: SPIE, 1991: 78-92.
[5] Schweitzer C, Stein K, Wendelstein N. Evaluation of appropriate sensor specifications for space based ballistic missile detection[C]//SPIE Proceedings. Bellingham, WA: SPIE, 2012: 85410M-1-11.
[6] Zhang Y G, Yang J, Zhou J, et al. Preliminary research of active radar/IR imaging compound seeker[J]. Infrared and Laser Engineering, 2007, 36(9): 43-46 (in Chinese). 张义广, 杨军, 周军, 等. 主动雷达/红外成像复合导引头技术浅谈[J]. 红外与激光工程, 2007, 36(9): 43-46.
[7] Yang B, Zheng T, Zhang S, et al. Analysis and modeling of terminal guidance system for a flight vehicle with side-window detection[C]//Proceedings of 2014 33rd Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2014: 1051-1056.
[8] Aidala V J. Kalman filter behavior in bearings-only tracking applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, AES-15 (1): 29-39.
[9] Ristic B, Arulampalam M S. Tracking a manoeuvring target using angle-only measurements: algorithms and performance[J]. Signal Processing, 2003, 83(6): 1223-1238.
[10] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part Ⅰ. Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364.
[11] Zhang H J, Liu F, Qiu X Y. A method of space registration for cooperative and noncooperative target based on UKF[J]. Digital Technology and Application, 2011(3): 80-82 (in Chinese). 张海军, 刘方, 邱晓野. 一种利用UKF进行协作式和非协作式目标空间配准的方法[J]. 数字技术与应用, 2011 (3): 80-82.
[12] Daeipour E, Bar-Shalom Y. An interacting multiple model approach for target tracking with glint noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 706-715.
[13] Qiao K, Wang Z Y, Cong M Y. Analysis on space based and ground based surveillance system to space target[J]. Optical Technique, 2006, 32(5): 744-746 (in Chinese). 乔凯, 王治乐, 丛明煜. 空间目标天基与地基监视系统对比分析[J]. 光学技术, 2006, 32(5): 744-746.
[14] Kirubarajan T, Bar-Shalom Y, Lerro D. Bearings-only tracking of maneuvering targets using a batch-recursive estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 770-780.
[15] Maybeck P S, Rogers S K. Adaptive tracking of multiple hot-spot target IR images[J]. IEEE Transactions on Automatic Control, 1983, 28(10): 937-943.
[16] Blair W D, Rice T R, Alouani A T, et al. Asynchronous data fusion for target tracking with a multitasking radar and optical sensor[C]//SPIE Proceedings. Bellingham, WA: SPIE, 1991: 234-245.
[17] Bar-Shalom Y. Multitarget-multisensor tracking: advanced applications[M]. Norwood, MA: Artech House, 1990: 391.
[18] Burke J J. The sage real quality control fraction and its interface with buic ii, Technical Report 308[R]. Bedford, MA: The MITRE Corporation, 1996.
[19] Leung H, Blanchette M, Harrison C. A least squares fusion of multiple radar data[C]//Proceedings of Radar. Paris, 1994: 364-369.
[20] Leung H, Blanchette M, Gault K. Comparison of registration error correction techniques for air surveillance radar network[C]//Proceedings of SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation. Bellingham, WA: SPIE, 1995: 498-508.
[21] Simard M A, Begin F. Central level fusion of radar and IRST contacts and the choice of coordinate system[C]//Proceedings of Optical Engineering and Photonics in Aerospace Sensing. Bellingham, WA: SPIE, 1993: 462-472.
[22] Li L G, Jing W X, Gao C S. Tracking near space vehicle using early-warning satellite[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 105-115 (in Chinese). 李罗钢, 荆武兴, 高长生. 基于预警卫星系统的临近空间飞行器跟踪[J]. 航空学报, 2014, 35(1): 105-115.
[23] van der Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D]. Beaverton, Oregon: Oregon Health & Science University, 2004.
[24] Zhang S J, Cao X B. The estimation algorithm of ballistic missile state based on early warning satellite[J]. Journal of Astronautics, 2005, 26(S1): 16-22 (in Chinese). 张世杰, 曹喜滨. 基于预警卫星观测的弹道导弹运动状态估计算法[J]. 宇航学报, 2005, 26(S1): 16-22.
[25] Colegrove S B, Davey S J. PDAF with multiple clutter regions and target models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 110-124.
[26] Puranik S, Tugnait J K. Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 23-35.
[27] Bar-Shalom Y, Blackman S S, Fitzgerald R J. Dimensionless score function for multiple hypothesis tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 392-400.
[28] Kirubarajan T, Bar-Shalom Y. Probabilistic data association techniques for target tracking in clutter[J]. Proceedings of the IEEE, 2004, 92(3): 536-557.
[29] Ahn B W, Choi J W, Song T L. An adaptive interacting multiple model with probabilistic data association filter using variable dimension model[C]//Proceedings of the 41st SICE Annual Conference. Piscataway, NJ: IEEE Press, 2002: 713-718.
[30] Wang R, Zong H, Zong C G. A fast algorithm for multiple targets data association in HF bistatic radar system based on MNJPDA[C]//Proceedings of 2009 IHMSC'09 International Intelligent Human-Machine Systems and Cybernetics. Piscataway, NJ: IEEE Press, 2009: 99-102.
[31] Yin X, Sun Y, Song S, et al. A target tracking algorithm based on optical transfer function and normalized cross correlation[C]//The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems. Berlin: Springer International Publishing, 2014: 1021-1027.
[32] Olfati-Saber R. Distributed Kalman filtering for sensor networks[C]//Proceedings of 2007 46th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2007: 5492-5498.
[33] Yang B Q, He F H, Yao Y. Passive tracking a maneuvering target with intermittent accessorial measurement[J]. Infrared and Laser Engineering, 2009, 38(3): 530-535 (in Chinese). 杨宝庆, 贺风华, 姚郁. 带有间歇辅助测量的机动目标被动跟踪[J]. 红外与激光工程, 2009, 38(3): 530-535.
[34] Cui Z S, Zeng T, Long T. Novel estimated algorithm for information fusion on MMW/IR dual-mode combined seeker[C]//Proceedings of Multispectral Image Processing and Pattern Recognition. Bellingham, WA: SPIE, 2001: 60-64.
[35] Chen T, Xu S. Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous[J]. Acta Astronautica, 2010, 67(1): 122-134.
[36] Mobus R, Kolbe U. Multi-target multi-object tracking, sensor fusion of radar and infrared[C]//Proceedings of 2004 IEEE Intelligent Vehicles Symposium. Piscataway, NJ: IEEE Press, 2004: 732-737.
[37] Han F, Yang W H. Radar and infra-red data fusion algorithm based on fuzzy-neural network[C]//Proceedings of the 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. Bellingham, WA: SPIE, 2007: 67233S-1-5.
[38] Dong C, Shi X, Xia L. A fuzzy adaptive fusion algorithm for radar/infrared dual mode guidance[C]//Proceedings of the Sixth International Symposium on Instrumentation and Control Technology: Sensors, Automatic Measurement, Control, and Computer Simulation. Bellingham, WA: SPIE, 2006: 63583A-1-7.
[39] Kim S H, Park B G, Choi H L, et al. Fixed-point smoothing approach for dual-mode guidance filtering with delayed measurement, AIAA-2014-0606[R]. Reston: AIAA, 2014.
[40] Lai Q F, Liu Y, Zhao J, et al. The anti-jamming approach of the anti-ship terminal radar aided by INS information[J]. Journal of National University of Defense Technology, 2011, 33(4): 86-91 (in Chinese). 来庆福, 刘义, 赵晶, 等. 利用惯导信息的反舰末制导雷达抗干扰方法[J]. 国防科技大学学报, 2011, 33(4): 86-91.
[41] Shaferman V, Oshman Y. Cooperative interception in a multi-missile engagement, AIAA-2009-5783[R]. Reston: AIAA, 2009.
[42] Liu Y F, Qi N M, Shan J J. Cooperative interception with double-line-of-sight-measuring, AIAA-2014-1478[R]. Re-ston: AIAA, 2014.
[43] Vermeulen A, Savelsberg R. Optimal mid-course doctrine for multiple missile deployment, AIAA-2012-4912[R]. Reston: AIAA, 2012.
[44] Ratnoo A, Shima T. Line of sight guidance for defending an aircraft, AIAA-2010-7877[R]. Reston: AIAA, 2010.
[45] Ratnoo A, Shima T. Guidance laws against defended aerial targets, AIAA-2011-6419[R]. Reston: AIAA, 2011.
[46] Tousley B C, Hafer T. Beyond line-of-sight networked fires weapon (NETFIRES)[C]//Proceedings of 2003 AeroSense. Bellingham, WA: SPIE, 2003: 1-6.
[47] Cai H P, Liu J X, Chen Y W, et al. Survey of the research on dynamic weapon-target assignment problem[J]. Journal of Systems Engineering and Electronics, 2006, 17(3): 559-565.
[48] Rosenberger J M, Hwang H S, Pallerla R P, et al. The generalized weapon target assignment problem[C]//Proceedings of 10th International Command and Control Research and Technology Symposium. Bethesda, Maryland: Lockheed Martin Corporation, 2005: 1-12.
[49] Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1-2): 83-97.
[50] Ahuja R K, Kumar A, Jha K C, et al. Exact and heuristic algorithms for the weapon-target assignment problem[J]. Operations Research, 2007, 55(6): 1136-1146.
[51] Lee Z J, Su S F, Lee C Y. Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(1): 113-121.
[52] Xin B, Chen J, Zhang J, et al. Efficient decision makings for dynamic weapon-target assignment by virtual permutation and tabu search heuristics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, 40(6): 649-662.
[53] Li Y, Dong Y N. Weapon-target assignment based on simulated annealing and discrete particle swarm optimization in cooperative air combat[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 626-631 (in Chinese). 李俨, 董玉娜. 基于SA-DPSO 混合优化算法的协同空战火力分配[J]. 航空学报, 2010, 31(3): 626-631.
[54] Lee Z J, Lee C Y, Su S F. An immunity-based ant colony optimization algorithm for solving weapon-target assignment problem[J]. Applied Soft Computing, 2002, 2(1): 39-47.
[55] Hosein P A, Walton J T, Athans M, et al. Dynamic weapon-target assignment problems with vulnerable C2 nodes, Report LIDS-P-1786[R]. Cambridge, Massachusetts: Laboratory for Information and Decision Systems, 1988.
[56] Hosein P A, Athans M. An asymptotic result for the multi-stage weapon-target allocation problem[C]//Pro-ceedings of the 29th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 1990: 240-245.
[57] Pryluk R, Shima T, Golan O M. Shoot-shoot-look for an air defense system[J]. IEEE Systems Journal, 2015 (in press).
[58] Cai H P, Liu J X, Chen Y W. On the Markov characteristic of dynamic weapon target assignment problem[J]. Journal of National University of Defense Technology, 2006, 28(3): 124-127 (in Chinese). 蔡怀平, 刘靖旭, 陈英武. 动态武器目标分配问题的马尔可夫性[J]. 国防科技大学学报, 2006, 28(3): 124-127.
[59] Chen Y W, Cai H P, Xing L N. An improved algorithm of policies optimization of dynamic weapon target assignment problem[J]. Systems Engineering-theory & Practice, 2007, 27(7): 160-165 (in Chinese). 陈英武, 蔡怀平, 邢立宁. 动态武器目标分配问题中策略优化的改进算法[J]. 系统工程理论与实践, 2007, 27(7): 160-165.
[60] Khosla D. Hybrid genetic approach for the dynamic weapon-target allocation problem[C]//Proceedings of Aerospace/Defense Sensing, Simulation, and Controls. Bellingham, WA: SPIE, 2001: 244-259.
[61] Besse C, Chaib-draa B. An efficient model for dynamic and constrained resource allocation problems[C]//Proceedings of the 2nd International Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS'07), 2007.
[62] Zhang P. Research on cooperative interception using multiple flight vehicles based on finite-time system theory [D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). 张鹏. 基于有限时间系统理论的多飞行器协同拦截问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[63] Peng R H, Wang G H, Chen S J, et al. Feasibility research on two missiles' cooperative location[J]. Journal of System Simulation, 2006, 18(5): 1118-1122 (in Chinese). 彭锐晖, 王国宏, 陈士举, 等. 两弹协同定位的可行性研究[J]. 系统仿真学报, 2006, 18(5): 1118-1122.
[64] He F H, Zhang P, Chen Y, et al. Output tracking control of switched hybrid systems: A fliess functional expansion approach[J]. Mathematical Problems in Engineering, 2013, 2013: 412509-1-13.
[65] Wang L, He F H, Wang J W, et al. Guidance law design against a ballistic target with multiple decoys: A finite time approach[C]//Proceedings of 2013 32nd Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2013: 5153-5158.
[66] Dionne D, Michalska H, Rabbath C A. Predictive guidance for pursuit-evasion engagements involving multiple decoys[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1277-1286.
[67] Best R A, Norton J P. Predictive missile guidance[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3): 539-546.
[68] Wei M, Chen G, Cruz J B, et al. Multi-missile interception integrating new guidance law and game theoretic resource management[C]//Proceedings of 2008 IEEE Aerospace Conference. Piscataway, NJ: IEEE Press, 2008: 1-13.
[69] Le Ménec S, Shin H S, Markham K, et al. Cooperative allocation and guidance for air defence application[J]. Control Engineering Practice, 2014, 32: 236-244.
[70] Piet-Lahanier H, Kahn A, Marzat J. Cooperative guidance laws for maneuvering target interceptions[C]//Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace (ACA 2013). Sherbrooke, Québec: IFAC, 2013: 301-306.
[71] Zhai C, He F H, Hong Y G. A coverage-based guidance algorithm of multiple interceptors for uncertain targets[C]//Proceedings of 2013 32nd Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2013: 7341-7346.
[72] Wang J W, He F H, Wang L, et al. Cooperative guidance for multiple interceptors based on dynamic target coverage theory[C]//Proceedings of 2014 11th World Congress on Intelligent Control and Automation (WCICA). Piscataway, NJ: IEEE Press, 2014: 4122-4127.
[73] Guo C, Liang X G. Cooperative guidance law for multiple near space interceptors with impact time control[J]. International Journal of Aeronautical and Space Sciences, 2014, 15: 281-292.
[74] Zhou J, Hu Q, Friswell M I. Decentralized finite time attitude synchronization control of satellite formation flying[J]. Journal of Guidance, Control, and Dynamics, 2012, 36(1): 185-195.
[75] Sarlette A, Sepulchre R, Leonard N. Cooperative attitude synchronization in satellite swarms: A consensus approach[C]//Proceedings of the 17th IFAC Symposium on Automatic Control in Aerospace. Sherbrooke, Québec: IFAC, 2007: 1-6.
[76] Shaferman V, Shima T. Cooperative optimal guidance laws for imposing a relative intercept angle, AIAA-2012-4909[R]. Reston: AIAA, 2012.
[77] Liu Y F, Qi N M, Tang Z W. Linear quadratic differential game strategies with two-pursuit versus single-evader[J]. Chinese Journal of Aeronautics, 2012, 25(6): 896-905.
[78] Rusnak I. Games based guidance in anti missile defence for high order participants[C]//Proceedings of MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference. Piscataway, NJ: IEEE Press, 2010: 812-817.
[79] Rusnak I. The Lady, the Bandits, and the Bodyguards——A two team dynamic game[C]//Proceedings of the 16th World IFAC Congress. Sherbrooke, Québec: IFAC, 2005.
[80] Perelman A, Shima T, Rusnak I. Cooperative differential games strategies for active aircraft protection from a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 761-773.
[81] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449.
[82] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492.
[83] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.
[84] Oza H B, Padhi R. Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 153-164.
[85] Qiao Y, Yang B, Cheng D. Attitude control of missile via fliess expansion and model predictive control[C]//Proceedings of 7th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE Press, 2008: 1527-1532.
[86] Yao Y, Yang B Q, He F H, et al. Attitude control of missile via fliess expansion[J]. IEEE Transactions on Control Systems Technology, 2008, 16(5): 959-970.
[87] Kumar S R, Rao S, Ghose D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4): 1230-1246.
[88] Kumar S R, Rao S, Ghose D. Non-singular terminal sliding mode guidance and control with terminal angle constraints for non-maneuvering targets[C]//Proceedings of 2012 12th International Workshop on Variable Structure Systems (VSS). Piscataway, NJ: IEEE Press, 2012: 291-296.
[89] Ebrahimi B, Bahrami M, Roshanian J. Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers[J]. Acta Astronautica, 2008, 62(10-11): 556-562.
[90] Li G L, Ji H B. A Finite time convergent guidance law with terminal angle constraint considering missile autopilot[C]//Proceedings of 2014 11th World Congress on Intelligent Control and Automation (WCICA). Piscataway, NJ: IEEE Press, 2014: 3948-3954.
[91] Fu J, Wu Q X, Jiang C S, et al. Robust sliding mode control with unidirectional auxiliary surfaces for nonlinear system with state constraints[J]. Control and Decision, 2011, 26(9): 1288-1294 (in Chinese). 傅健, 吴庆宪, 姜长生, 等. 带状态约束的非线性系统单向辅助面滑模控制[J]. 控制与决策, 2011, 26(9): 1288-1294.
[92] Fu J, Wu Q X, Chen W H, et al. Chattering-free condition for sliding mode control with unidirectional auxiliary surfaces[J]. Transactions of the Institute of Measurement & Control, 2013, 35(5): 593-605.
[93] Fu J, Wu Q X, Jiang C S, et al. Robust sliding mode positively invariant set for nonlinear continuous system[J]. Acta Automatica Sinica, 2011, 37(11): 1395-1401 (in Chinese). 傅健, 吴庆宪, 姜长生, 等. 连续非线性系统的滑模鲁棒正不变集控制[J]. 自动化学报, 2011, 37(11): 1395-1401.
[94] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.
[95] Xi Y G, Li D W, Lin S. Model predictive control—Status and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236 (in Chinese). 席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.
[96] Borrelli F, Baotic' M, Pekar J, et al. On the computation of linear model predictive control laws[J]. Automatica, 2010, 46(6): 1035-1041.
[97] Kouramas K I, Faísca N P, Panos C, et al. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming[J]. Automatica, 2011, 47(8): 1638-1645.
[98] Bemporad A, Morari M, Dua V, et al. The explicit linear quadratic regulator for constrained systems[J]. Automatica, 2002, 38(1): 3-20.
[99] Grancharova A, Johansen T A. Survey of explicit approaches to constrained optimal control[M]. Berlin: Springer Heidelberg, 2005: 47-97.
[100] Menon P K, Sweriduk G D, Ohlmeyer E J, et al. Integrated guidance and control of moving-mass actuated kinetic warheads[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 118-126.
[101] Zhang Y G, Zhang Y A, Jia Y J. An under actuated sys-tem control method to time and angle cooperative guidance for multi-missiles[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(2): 126-130 (in Chinese) 张友根, 张友安, 贾永强. 欠驱动系统控制方法实现导弹时间与角度协同[J]. 海军航空工程学院学报, 2011, 26(2): 126-130.
[102] Li X, Yang B, Yao Y. Autonomous approach and fly around a target satellite with input constraints[C]//Proceedings of AIAA Guidance Navigation and Control Conference. Reston: AIAA, 2013: 1-14.
[103] Jiang Y, He F, Yao Y. Hybrid control strategy for attitude stabilization of an underactuated spacecraft with two moving mass[C]//Proceedings of IEEE International Conference on Automation and Logistics. Piscataway, NJ: IEEE Press, 2007: 389-393.
[104] Cao X X, Hu C H, Qiao J F, et al. Active fault-tolerant control for missile actuators based on fault compensation idea[J]. Electronics Optics & Control, 2013, 20(3): 30-34 (in Chinese). 曹祥宇, 胡昌华, 乔俊峰, 等. 基于故障补偿思想的导弹执行机构主动容错控制研究[J]. 电光与控制, 2013, 20(3): 30-34.
[105] Cao X X, Hu C H, Qiao J F. Integrated fault-tolerant control for missile attitude control system subjected to actuator faults[J]. Journal of Astronautics, 2013, 34(7): 938-945 (in Chinese). 曹祥宇, 胡昌华, 乔俊峰. 考虑执行机构故障的导弹姿态控制系统的集成容错控制[J]. 宇航学报, 2013, 34(7): 938-945.
[106] Wang J. Research on aerodynamic thermal ablation prediction and control for hypersonic vehicle[D]. Guangzhou: South China University of Technology, 2013 (in Chinese). 王俊. 高超声速飞行器气动热烧蚀预测与控制研究[D]. 广州: 华南理工大学, 2013.
[107] Augenstein S, Rock S M. Simultaneous estimation of target pose and 3-D shape using the fastslam algorithm[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009.
[108] Lichter M D, Dubowsky S. State, shape, and parameter estimation of space objects from range images[C]//Proceedings of 2004 IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2004: 2974-2979.
[109] Hillenbrand U, Lampariello R. Motion and parameter estimation of a free-floating space object from range data for motion prediction[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space. 2005.
[110] Subbarao K, McDonald J. Multi-sensor fusion based relative navigation for synchronization and capture of free floating spacecraft[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2005: 15-18.
[111] Ruel S, English C, Anctil M, et al. 3DLASSO: real-time pose estimation from 3D data for autonomous satellite servicing[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2005.
[112] Aghili F. Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics, AIAA-2008-7274[R]. Reston: AIAA, 2008.
[113] Segal S, Gurfil P. Stereoscopic Vision-Based Spacecraft Relative State Estimation, AIAA-2009-6094[R]. Reston: AIAA, 2009.
[114] Wang J W, He F H, Yang B Q, et al. Fly-by guidance problem of a flight vehicle: analysis and design, AIAA-2013-4773[R]. Reston: AIAA, 2013.
[115] Yu Y. Passive range-finding method of infrared imaging target based on characteristic lines[J]. Shipboard Electronic Countermeasure, 2009, 32(6): 86-90 (in Chinese). 于勇. 基于特征直线的红外成像目标被动测距方法[J]. 舰船电子对抗, 2009, 32(6): 86-90.
[116] Pu J L, Cui N G, Rong S Y. Passive ranging algorithm in terms of polar coordinates[J]. Journal of Harbin Institute of Technology, 2009, 16(3): 428-430.
[117] Wang W P, Wei H G, Liao S, et al. Observability analysis and filtering algorithms for passive ranging[J]. Infrared & Laser Engineering, 2009, 38(6): 1083-1088 (in Chinese). 王万平, 魏宏刚, 廖胜, 等. 被动测距的可观测性分析和滤波方法[J]. 红外与激光工程, 2009, 38(6): 1083-1088.
[118] Yang B Q. Research on guidance and control law for exo-atmospheric KKV based on predictive control[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese). 杨宝庆. 基于预测控制的大气层外KKV制导控制规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[119] Shi Z J, Lu Y F, Zhang D H. A proporional navigaion law for improving target-finding accuracy to very small tactical missile[J]. Journal of Northwestern Polytechnical University, 1993, 11(2): 189-193 (in Chinese). 施志桂, 陆毓峰, 张殿祐. 一种能实现超前偏置的比例导引律[J]. 西北工业大学学报, 1993, 11(2): 189-193.
[120] Wang K, Dang L. Design on biased guidance law of exoatmospheric interceptor[J]. Aero Weaponry, 2013 (5): 26-29 (in Chinese). 王珂, 党琳. 大气层外拦截器偏置导引律设计[J]. 航空兵器, 2013 (5): 26-29.
[121] Li G H. Study on terminal guidance of flyby spacecraft[D]. Changsha: National University of Defense technology, 2011 (in Chinese). 李广华. 近旁飞越航天器末制导方法研究[D]. 长沙:国防科学技术大学, 2011.
[122] Wonham W M. On the separation theorem of stochastic control[J]. SIAM Journal on Control, 1968, 6(2): 312-326.
[123] Shinar J, Oshman Y, Turetsky V. Optimal integration of estimation and guidance for interceptors, Technical Report No. 0704-0188[R]. Israel: Technion-Israel Institute of Science and Technology, 2005.
[124] Shinar J, Turetsky V, Oshman Y. New logic-based estimation/guidance algorithm for improved homing against randomly maneuvering targets, AIAA-2004-4886[R]. Reston: AIAA, 2004.
[125] Shinar J, Turetsky V. Further improved homing accuracy in ballistic missile defense against randomly maneuvering targets AIAA-2005-6160[R]. Reston: AIAA, 2005.
[126] Shaviv I G, Oshman Y. Guidance without assuming separation, AIAA-2005-6154[R]. Reston: AIAA, 2005.
[127] Dionne D, Michalska H, Rabbath C A. A predictive guidance law with uncertain information about the target state[C]//Proceedings of 2006 American Control Conference. Piscataway, NJ: IEEE Press, 2006.
[128] Yang B Q, Liu H H, Yao Y. Cooperative interception guidance for multiple vehicles: A receding horizon optimization approach[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway, NJ: IEEE Press, 2014: 827-831.
[129] Chao T, Wang S, Tian G, et al. Integrated guidance and control with terminal impact angular constraint for bank to turn flight vehicle[C]//Proceedings of 2014 33rd Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2014: 681-685.
[130] Wang X H, Wang J Z. Integrated missile guidance and control using adaptive sliding mode approach[C]//Proceedings of 2012 31st Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2012: 4611-4616.
[131] Erdos D, Shima T, Kharisov E, et al. L1 adaptive control integrated missile autopilot and guidance, AIAA-2012-4465[R]. Reston: AIAA, 2012.
[132] Song H, Zhang T, Zhang G, et al. Integrated design of interceptor guidance and control based on L1 adaptive control[C]//Proceedings of 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Piscataway, NJ: IEEE Press, 2013: 525-528.
[133] Fan Z, Yu D, Zhao H, et al. Integrated backstepping guidance and control design with impact angle constraint[C]//Proceedings of 2011 International Conference in Electrics, Communication and Automatic Control Proceedings. New York: Springer, 2012: 1107-1113.
[134] Zhao C Z, Huang Y. Adrc based integrated guidance and control scheme[J]. Journal of Systems Science and Mathematical Sciences, 2010, 30(6): 742-751 (in Chinese). 赵春哲, 黄一. 基于自抗扰控制的制导与运动控制一体化设计[J]. 系统科学与数学, 2010, 30(6): 742-751.
[135] Xue W C, Huang C D, Huang Y. Design methods for the integrated guidance and control system[J]. Control Theory & Applications, 2013, 30(12): 1511-1520 (in Chinese). 薛文超, 黄朝东, 黄一. 飞行制导控制一体化设计方法综述[J]. 控制理论与应用, 2013, 30(12): 1511-1520.
[136] Shao X L, Wang H L. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO[J]. ISA Transactions, 2015 (in press).
[137] Shamaghdari S, Nikravesh S K Y, Haeri M. Integrated guidance and control of elastic flight vehicle based on robust MPC[J]. International Journal of Robust and Nonlinear Control, 2014, DOI: 10.1002/rnc.3215 (in press).
[138] Yan H, Ji H. Integrated guidance and control for dual-control missiles based on small-gain theorem[J]. Automatica, 2012, 48(10): 2686-2692.
[139] Shu Y, Tang S. Integrated robust dynamic inversion design of missile guidance and control based on nonlinear disturb-ance observer[C]//Proceedings of 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Piscataway, NJ: IEEE Press, 2012: 42-45.
[140] Restrepo C, Hurtado J E. Pattern recognition for a flight dynamics Monte Carlo simulation, AIAA-2011-6590[R]. Reston: AIAA, 2011.
[141] Zarchan P. Complete statistical analysis of nonlinear missile guidance systems-SLAM[J]. Journal of Guidance, Control, and Dynamics, 1979, 2(1): 71-78.
[142] Weiss M, Adjoint method for missile performance analysis on state-space models[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 236-248.
[143] Ohlmeyer E. Root-mean-square miss distance of proportional navigation missile against sinusoidal target[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 563-568.
[144] Yanushevsky R. Analysis of optimal weaving frequency of maneuvering targets[J]. Journal of Spacecraft and Rockets, 2004, 41(3): 477-479.
[145] Mracek C P. A miss distance study for homing missiles: tail vs canard control, AIAA-2006-6082[R]. Reston: AIAA, 2006.
[146] Weiss M, Rol M, Falkena W. Guidance performance analysis in the presence of model uncertainties, AIAA-2007-6786[R]. Reston: AIAA, 2007.
[147] Bucco D, Weiss M. Blind range influence on guidance loop performance: an adjoint-based analysis, AIAA-2013-4953[R]. Reston: AIAA, 2013.
[148] Gelb A, Warren R S. Direct statistical analysis of nonlinear systems-CADET[J]. AIAA Journal, 1973, 11(5): 689-694.
[149] Li H P, Zhong R L, Wei Y, et al. Research on covariance method of accuracy analysis in missile terminal guidance[J]. Tactical Missile Technology, 2004(1): 49-54 (in Chinese). 李海平, 钟瑞麟, 魏岳, 等. 导弹末制导精度分析的协方差方法研究[J]. 战术导弹技术, 2004(1): 49-54.
[150] Ji D G, Yao Y, He F H. Finite-time H2 performance analysis considering target maneuvers and guidance loop dynamics[C]//Proceedings of International Symposium on Systems & Control in Aerospace & Astronautics. Piscataway, NJ: IEEE Press, 2008: 1-4.
[151] Ji D G. Performance analysis via finite-time norm for terminal guidance system[D]. Harbin: Harbin Institute of Technology, 2008 (in Chinese). 季登高. 基于有限时间范数的末制导系统性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2008.
[152] Ji D G, He F H, Yao Y. Finite time L1 approach for missile overload requirement analysis in terminal guidance[J]. Chinese Journal of Aeronautics, 2009, 22(4): 413-418.
[153] Ji D G, Yao Y. Zero effort miss distance dynamics analysis in homing missile based on spectrum method[J]. Journal of Astronautics, 2008, 29(2): 605-609 (in Chinese). 季登高, 姚郁. 基于谱方法的寻的导弹零效脱靶量性能分析[J]. 宇航学报, 2008, 29(2): 605-609.
[154] He F, Wang L, Wang J, et al. A finite-time generalized H2 gain measure and its per-formance criterion[C]//Proceedings of 2013 9th Asian Control Conference (ASCC). Piscataway, NJ: IEEE Press, 2013: 1-6.
[155] He F, Wang L, Chen W. The terminal guidance system performance analysis: A finite-time gain measurement approach[C]//Proceedings of AIAA Guidance, Navigation, and Control. Reston: AIAA, 2013.
[156] He F, Wang L, Yao Y, et al. A finite-time gain measure approach of linear time-varying systems: Analysis and design[C]//Proceedings of 2014 American Control Conference (ACC). Piscataway, NJ: IEEE Press, 2014: 5168-5173. |