1 |
DONG H L, YANG X B. Finite-time prescribed performance control for space circumnavigation mission with input constraints and measurement uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3209-3222.
|
2 |
ZHANG L J, XIA Y Q, SHEN G H, et al. Fixed-time attitude tracking control for spacecraft based on a fixed-time extended state observer[J]. Science China Information Sciences, 2021, 64(11): 1-17.
|
3 |
LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12): 3591-3599.
|
4 |
王辉, 胡庆雷, 石忠, 等. 基于反步法的航天器有限时间姿态跟踪容错控制[J]. 航空学报, 2015, 36(6): 1933-1939.
|
|
WANG H, HU Q L, SHI Z, et al. Backstepping-based finite-time fault-tolerant attitude tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1933-1939 (in Chinese).
|
5 |
张剑桥, 叶东, 孙兆伟. SE(3)上姿轨耦合航天器高精度快速终端滑模控制[J]. 宇航学报, 2017, 38(2): 176-184.
|
|
ZHANG J Q, YE D, SUN Z W. High-accuracy fast terminal sliding mode control for coupled spacecraft on SE(3)[J]. Journal of Astronautics, 2017, 38(2): 176-184 (in Chinese).
|
6 |
胡庆雷, 王辉, 石忠, 等. 航天器新型非奇异饱和终端滑模姿态控制[J]. 宇航学报, 2015, 36(4): 430-437.
|
|
HU Q L, WANG H, SHI Z, et al. Novel non-singular saturated terminal sliding mode based attitude controller for spacecraft[J]. Journal of Astronautics, 2015, 36(4): 430-437 (in Chinese).
|
7 |
ZOU A M. Finite-time output feedback attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1): 338-345.
|
8 |
GUI H C, VUKOVICH G. Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs[J]. International Journal of Robust and Nonlinear Control, 2017, 27(1): 15-38.
|
9 |
SHAKOURI A, ASSADIAN N. A framework for prescribed-time control design via time-scale transformation[J]. IEEE Control Systems Letters, 2022, 6: 1976-1981.
|
10 |
LIU Y, LI H Y, LU R Q, et al. An overview of finite/fixed-time control and its application in engineering systems[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2106-2120.
|
11 |
马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6): 321763.
|
|
MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 321763 (in Chinese).
|
12 |
HUANG B, LI A J, GUO Y, et al. Fixed-time attitude tracking control for spacecraft without unwinding[J]. Acta Astronautica, 2018, 151: 818-827.
|
13 |
GONG K J, LIAO Y, WANG Y. Adaptive fixed-time terminal sliding mode control on SE(3) for coupled spacecraft tracking maneuver[J]. International Journal of Aerospace Engineering, 2020, 2020: 1-15.
|
14 |
ZOU A M, KUMAR K D, DE RUITER A H J. Fixed-time attitude tracking control for rigid spacecraft[J]. Automatica, 2020, 113: 108792.
|
15 |
WU R, WEI C Z, YANG F, et al. FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems[J]. IET Control Theory & Applications, 2018, 12(18): 2459-2467.
|
16 |
ZHANG J Q, BIGGS J D, YE D, et al. Finite-time attitude set-point tracking for thrust-vectoring spacecraft rendezvous[J]. Aerospace Science and Technology, 2020, 96: 105588.
|
17 |
JIMÉNEZ-RODRÍGUEZ E, MUÑOZ-VÁZQUEZ A J, SÁNCHEZ-TORRES J D, et al. A note on predefined-time stability [J]. IFAC-PapersOnLine, 2018, 51(13): 520-525.
|
18 |
徐世昊, 关英姿, 浦甲伦, 等. VTHL运载器再入返回预设时间滑模控制[J]. 航空学报, 2023, 44(7): 326857.
|
|
XU S H, GUAN Y Z, PU J L, et al. Predefined-time sliding mode control for VTHL launch vehicle in reentry phase[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 326857 (in Chinese).
|
19 |
XU C, WU B L, ZHANG Y C. Distributed prescribed-time attitude cooperative control for multiple spacecraft[J]. Aerospace Science and Technology, 2021, 113: 106699.
|
20 |
MORASSO P, SANGUINETI V, SPADA G. A computational theory of targeting movements based on force fields and topology representing networks[J]. Neurocomputing, 1997, 15(3-4): 411-434.
|
21 |
CAO Y, CAO J F, SONG Y D. Practical prescribed time control of euler–lagrange systems with partial/full state constraints: A settling time regulator-based approach[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13096-13105.
|
22 |
WANG F, MIAO Y, LI C Y, et al. Attitude control of rigid spacecraft with predefined-time stability[J]. Journal of the Franklin Institute, 2020, 357(7): 4212-4221.
|
23 |
XIE S Z, CHEN Q. Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(1): 189-193.
|
24 |
ZHANG T T, ZHANG S J, GUO F Z, et al. Prescribed time attitude containment control for satellite cluster with bounded disturbances[J]. ISA Transactions, 2023, 137: 160-174.
|
25 |
朱战霞, 马家瑨, 樊瑞山. 基于螺旋理论描述的空间相对运动姿轨同步控制[J]. 航空学报, 2016, 37(9): 2788-2798.
|
|
ZHU Z X, MA J J, FAN R S. Synchronization control of relative motion for spacecraft with screw theory based description[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2788-2798 (in Chinese).
|
26 |
LYKE J C. Plug-and-play satellites[J]. IEEE Spectrum, 2012, 49(8): 36-42.
|
27 |
SUN R, SHAN A D, ZHANG C X, et al. Quantized fault-tolerant control for attitude stabilization with fixed-time disturbance observer[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(2): 449-455.
|
28 |
ZHANG S, YANG Z. Adaptive finite-time control on SE(3) for spacecraft final proximity maneuvers with input quantization[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-25.
|
29 |
LIU R X, CAO X B, LIU M, et al. 6-DOF fixed-time adaptive tracking control for spacecraft formation flying with input quantization[J]. Information Sciences, 2019, 475: 82-99.
|
30 |
梅亚飞, 廖瑛, 龚轲杰, 等. SE(3)上航天器姿轨耦合固定时间容错控制[J]. 航空学报, 2021, 42(11): 525089.
|
|
MEI Y F, LIAO Y, GONG K J, et al. Fixed-time fault-tolerant control for coupled spacecraft on SE(3)[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525089 (in Chinese).
|
31 |
LEE D, SANYAL A K, BUTCHER E A. Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance[J]. Journal of Guidance, Control, and Dynamics, 2014, 38(4): 587-600.
|
32 |
XING L T, WEN C Y, ZHU Y, et al. Output feedback control for uncertain nonlinear systems with input quantization[J]. Automatica, 2016, 65: 191-202.
|
33 |
ZHANG J Q, YE D, SUN Z W, et al. Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking maneuver with actuator saturation and misalignment[J]. Acta Astronautica, 2018, 143: 221-233.
|
34 |
许闯, 吴宝林. 输入饱和下多航天器分布式固定时间输出反馈姿态协同控制[J]. 航空学报, 2023, 44(10): 327465.
|
|
XU C, WU B L. Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft with input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 327465 (in Chinese).
|
35 |
YU J P, SHI P, ZHAO L. Finite-time command filtered backstepping control for a class of nonlinear systems[J]. Automatica, 2018, 92: 173-180.
|
36 |
MUÑOZ-VÁZQUEZ A J, SÁNCHEZ-TORRES J D, JIMÉNEZ-RODRÍGUEZ E, et al. Predefined-time robust stabilization of robotic manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1033-1040.
|
37 |
路遥. 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021, 42(11): 524737.
|
|
LU Y. Backstepping control for hypersonic flight vehicles based on tracking differentiator[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524737 (in Chinese).
|
38 |
JIANG L, WANG Y E, XU S J. Integrated 6-DOF orbit-attitude dynamical modeling and control using geometric mechanics[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-13.
|
39 |
YE D, ZOU A M, SUN Z W. Predefined-time predefined-bounded attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 464-472.
|