[1] Saberi H, Khoshlahjeh M, Ormiston R A. Overview of RCAS and application to advanced rotorcraft problems. AHS 4th Decennial Specialist’s Conference on Aeromechanics. Washington D C: AHS International, 2004: 452-471.
[2] Johnson W. Rotorcraft dynamics models for a comprehensive analysis. AHS 54th Annual Forum. Washington D C: AHS International, 1998: 452-471.
[3] Bauchau O A, Wang J L. Efficient and robust approaches for rotorcraft stability analysis. Journal of the American Helicopter Society, 2010, 55(3): 032006-1-9.
[4] Laulusa A, Bauchau O A. Review of classical approaches for constraint enforcement in multibody systems. Journal of Computational and Nonlinear Dynamics, 2008, 3(1): 011004-011011.
[5] Lim I G, Lee I. Aeroelastic analysis of bearingless rotors using large deflection beam theory. AIAA Journal, 2007, 45(3): 599-606.
[6] Hopkins A S, Scientist R, Ormiston R A, et al. An examination of selected problems in rotor blade structural mechanics and dynamics. Journal of the American Helicopter Society, 2006, 51(1): 104-125.
[7] Yu Z H, Dong L H, Deng J H, et al. Analysis and experimental study on aeroelasticity of rotor with special-shaped blade using large deflection theory. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(3): 312-317. (in Chinese) 虞志浩, 董凌华, 邓景辉, 等. 旋翼异形桨叶大变形气弹动力学分析与试验研究. 南京航空航天大学学报, 2011,43(3): 312-317.
[8] Deng J H. Helicopter advanced rotor aeroelasticity stability research. Nangjing: Nangjing University of Aeronautics and Astronautics, 2009.(in Chinese) 邓景辉. 直升机先进旋翼气弹稳定性研究. 南京:南京航空航天大学, 2009.
[9] Hodges D H. Nonlinear composite beam theory. Virginia: AIAA, 2006: 262-269.
[10] Bir G, Chopra I. University of marrland advanced rotorcraft code (UMARC) theory manual. UM-Aero Report, 92-02, 1992.
[11] Subramanian S, Ma G, Gaonkar G H, et al. Correlation of several aerodynamic models and measurements of hingeless-rotor trim and stability. Journal of the American Helicopter Society, 2000, 45(2): 106-117.
[12] Yang W D, Ma J, Zhang C L. Model experiment and damping identification for aeroelastic stability of helicopter rotor with elastomeric lag damper. Journal of Vibration Engineering, 2007, 20(1): 101-106.(in Chinese) 杨卫东, 马杰, 张呈林. 带粘弹减摆器旋翼系统气弹稳定性试验与阻尼识别. 振动工程学报, 2007, 20(1): 101-106.
[13] Chopra I. Dynamic stability of bearingless circulation control rotor blade in hover. Journal of the American Helicopter Society, 1985, 30(4): 40-47.
[14] Maier T H, Sharpe D L. Fundamental investigation of hingeless rotor aeroelastic stability, test data and correlation. AHS 51st Annual Forum. Washington D C: AHS International, 1995: 1176-1190.
[15] Bauchau O A. Flexible multibody dynamics. Netherlands: Springer, 2011: 463-503.
[16] Shabana A A, Bauchau O A, Hulbert G M. Integration of large deformation finite element and multibody system algorithms. Journal of Computational and Nonlinear Dynamics, 2007, 2(4): 351-359.
[17] Bauchau O A, Wang J L.Stability analysis of complex multibody systems. Journal of Computational and Nonlinear Dynamics, 2006, 1(1): 71-80.
[18] Shabana A A. Dynamics of multibody systems. Cambridge: Cambridge University Press, 2005: 86-158.
[19] Lu Y F. Dynamics of flexible multibody systems. Beijing: Higher Education Press, 1996: 274-299. (in Chinese) 陆佑方. 柔性多体系统动力学. 北京: 高等教育出版社, 1996: 274-299.
[20] Schlenkrich S, Walther A. Global convergence of quasi-Newton methods based on adjoint Broyden updates. Applied Numerical Mathematics, 2009, 59(5): 1120-1136.
[21] Ziani M, Guyomarc'h F. An autoadaptative limited memory Broyden's method to solve systems of nonlinear equations. Applied Mathematics and Computation, 2008, 205(1): 202-211.
[22] Wang X Y, Shi P P. Global convergence of the modified Broyden’s family based on the new Quasi-Newton equation. Mathematica Applicata, 2008, 21(2): 340-344. (in Chinese) 王希云, 时平平. 基于新拟牛顿方程的修改Broyden族的全局收敛性. 应用数学, 2008, 21(2): 340-344.
[23] Argyros I K, Cho Y J, Hilout S. On the convergence of Broyden-like methods using recurrent functions. Numerical Functional Analysis and Optimization, 2011, 32(1): 26-40.
[24] Dai H, Zhou S Q, Xu G Q. A numerical analysis of aeroelastic stability problem of helicopter rotor blades. Journal of Nanjing University of Aeronautics & Astronautics, 1985, 17(4): 145-154. (in Chinese) 戴华, 周树荃, 徐桂祺. 直升机旋翼气动弹性稳定性问题的数值分析. 南京航空航天大学学报, 1985, 17(4): 145-154.
[25] Zeng K H. On the convergence domain of Broyden’s method. Journal of Southwest Jiaotong University, 1983, 15(3): 98-101. (in Chinese) 曾克和. 关于Broyden方法的收敛性. 西南交通大学学报, 1983, 15(3): 98-101.
[26] Zeng K H. On the convergence of a combined Newton-Broyden’s iterative method. Journal of Southwest Jiaotong University, 1983, 15(4): 38-45. (in Chinese) 曾克和. Newton-Broyden组合迭代法的收敛性. 西南交通大学学报, 1983, 15(4): 38-45.
[27] Leishman J G. Principles of helicopter aerodynamics second edition. Cambridge: Cambridge University Press, 2007: 378-417.
[28] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo-implicit algorithm. Journal of Aircraft, 1995, 32(6): 1276-1285.
[29] Bhagwat M J, Leishman J G. Generalized viscous vortex core model for application to free-vortex wake and aeroacoustic calculations.The 58th Annual Forum and Technology Display of the American Helicopter Society International. Montreal, Canada: AHS, 2002: 2042-2057.
[30] Maier T H. Aeroelastic stability for straight and swept-tip rotor blades in hover and forward flight. AHS 55th Annual Forum. Washington D C: AHS International, 1999: 1031-1047. |