首页 >

一种基于线性约束的鲁棒几何滤波方法

金宇强,杨旭升,张文安   

  1. 浙江工业大学
  • 收稿日期:2025-09-28 修回日期:2025-11-23 出版日期:2025-11-28 发布日期:2025-11-28
  • 通讯作者: 张文安
  • 基金资助:
    国家自然科学基金

Robust Geometric Filtering via Linear Constraint

  • Received:2025-09-28 Revised:2025-11-23 Online:2025-11-28 Published:2025-11-28
  • Supported by:
    National Natural Science Foundation of China

摘要: 针对几何滤波结果对模型失配敏感的问题,本文提出了一种线性约束方法。首先,通过分析群仿射系统中模型失配对滤波过程的影响机制,揭示了标准几何滤波(如不变扩展卡尔曼滤波)在模型失配时误差累积的本质原因。其次,设计了一种线性约束滤波方法,通过约束滤波增益矩阵在模型偏差方向上的行为来抑制误差传播,同时保持李群流形上的几何特性。特别地,该方法在保持实时性的情况下,有效提升了系统对模型失配的鲁棒性。最后,通过惯性导航与全球卫星导航系统组合的仿真与实验表明,所提方法相较标准不变扩展卡尔曼滤波的估计精度上均取得较大提升,为复杂环境下的鲁棒滤波提供了有效解决方案。

关键词: 几何滤波, 模型失配, 鲁棒估计, 卡尔曼滤波, 李群与李代数

Abstract: Geometric filters are known to be highly sensitive to model mismatch — a critical limitation in real-world applications. To address this issue, this paper introduces a novel filtering framework grounded in linear constraint enforcement. We begin by analyzing how model mismatch propagates through the filtering process in group-affine systems, revealing the fundamental mechanism behind error accumulation in conventional geometric filters such as the invariant extended Kalman filter. Building on this insight, we design a constrained filtering strategy that actively regulates the gain matrix along the direction of model deviation, thereby suppressing error growth while preserving the intrinsic geometric structure of the underlying Lie group manifold. Crucially, the proposed method achieves this enhanced robustness without sacrificing computational efficiency, making it suitable for real-time deployment. Finally, simulations and experiments on an integrated inertial navigation and global navigation satellite system (INS/GNSS) demonstrate that the proposed approach achieves substantial improvements in estimation accuracy compared to the standard InEKF, offering an effective solution for robust filtering in complex environments.

Key words: Geometric filtering, model mismatch, robust estimation, Kalman filter, Lie groups and Lie algebras

中图分类号: