1 |
王明明, 罗建军, 袁建平, 等. 空间在轨装配技术综述[J]. 航空学报, 2021, 42(1): 523913.
|
|
WANG M M, LUO J J, YUAN J P, et al. In-orbit assembly technology: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523913 (in Chinese).
|
2 |
孟光, 韩亮亮, 张崇峰. 空间机器人研究进展及技术挑战[J]. 航空学报, 2021, 42(1): 523963.
|
|
MENG G, HAN L L, ZHANG C F. Research progress and technical challenges of space robot[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523963 (in Chinese).
|
3 |
胡庆雷, 邵小东, 杨昊旸, 等. 航天器多约束姿态规划与控制: 进展与展望[J]. 航空学报, 2022, 43(10): 527351.
|
|
HU Q L, SHAO X D, YANG H Y, et al. Spacecraft attitude planning and control under multiple constraints: Review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527351 (in Chinese).
|
4 |
沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报, 2020, 41(6): 647-656.
|
|
SHEN Y, LI C L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astonautics, 2020, 41(6): 647-656 (in Chinese).
|
5 |
FAURÉ M, HENRY D, CIESLAK J, et al. Optimization of spacecraft thrusters configuration under fault diagnosability and recoverability constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5275-5286.
|
6 |
FONOD R, HENRY D, CHARBONNEL C, et al. Robust FDI for fault-tolerant thrust allocation with application to spacecraft rendezvous[J]. Control Engineering Practice, 2015, 42: 12-27.
|
7 |
GUO X G, TIAN M E, LI Q, et al. Multiple-fault diagnosis for spacecraft attitude control systems using RBFNN-based observers[J]. Aerospace Science and Technology, 2020, 106: 106195.
|
8 |
LU P, VAN EYKEREN L, VAN KAMPEN E, et al. Selective-reinitialization multiple-model adaptive estimation for fault detection and diagnosis[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(8): 1409-1424.
|
9 |
RU J F, LI X R. Variable-structure multiple-model approach to fault detection, identification, and estimation[J]. IEEE Transactions on Control Systems Technology, 2008, 16(5): 1029-1038.
|
10 |
LUO T Y, LIU M, ZHAO H T, et al. Data-driven fault monitoring for spacecraft control moment gyro with slice residual attention network[J]. Journal of the Franklin Institute, 2022, 359(16): 9313-9333.
|
11 |
GUO Y Q, LIU Q Y, HE X. Active fault diagnosis for stochastic systems subject to non-convex input constraints[J]. Automatica, 2024, 164: 111631.
|
12 |
PATTON R J, UPPAL F J, SIMANI S, et al. Robust FDI applied to thruster faults of a satellite system[J]. Control Engineering Practice, 2010, 18(9): 1093-1109.
|
13 |
KAWATSU K, FUJII G, NAGATA T, et al. Preliminary demonstration of concept for fault diagnosis in resilient redundant spacecraft propulsion[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023: 1259.
|
14 |
HU D, SAROSH A, DONG Y F. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels[J]. ISA Transactions, 2012, 51(2): 309-316.
|
15 |
WANG C X, ZHANG Y X, ZHAO Z B, et al. Dynamic model-assisted transferable network for liquid rocket engine fault diagnosis using limited fault samples[J]. Reliability Engineering & System Safety, 2024, 243: 109837.
|
16 |
唐艺璠, 窦立谦, 季春惠, 等. 基于深度迁移学习的航天器故障诊断[J]. 空间控制技术与应用, 2021, 47(3):57-63.
|
|
TANG Y F, DOU L Q, JI C H, et al. Deep tran-sfer learning-based fault diagnosisof spacecraft attit-ude system[J]. Aerospace Control and Application, 2021, 47(3): 57-63 (in Chinese).
|
17 |
AI S J, SONG J, CAI G B. A real-time fault diagnosis method for hypersonic air vehicle with sensor fault based on the auto temporal convolutional network[J]. Aerospace Science and Technology, 2021, 119: 107220.
|
18 |
HE Z Z, SHEN C Q, CHEN B J, et al. A new feature boosting based continual learning method for bearing fault diagnosis with incremental fault types[J]. Advanced Engineering Informatics, 2024, 61: 102469.
|
19 |
金洋, 王日新, 徐敏强. 基于状态记忆的航天器自主故障诊断方法[J]. 系统工程与电子技术, 2015, 37(6): 1452-1458.
|
|
JIN Y, WANG R X, XU M Q. Spacecraft autonomous fault diagnosis method based on state memory[J]. Systems Engineering and Electronics, 2015, 37(6): 1452-1458 (in Chinese).
|
20 |
VALDES A, KHORASANI K. A pulsed plasma thruster fault detection and isolation strategy for formation flying of satellites[J]. Applied Soft Computing, 2010, 10(3): 746-758.
|
21 |
TANG L, CHEN S L, WANG K, et al. Redundancy gyroscopes bias fault diagnosis based on the correlated measurement equations in Fengyun-4 spacecraft[J]. Advances in Space Research, 2022, 70(2): 523-545.
|
22 |
BARZEGAR A, RAHIMI A. A dissipativity-based robust fault diagnosis approach for clusters of small satellites[J]. Acta Astronautica, 2024, 214: 182-195.
|
23 |
MEI Y F, LIAO Y, GONG K J, et al. Fuzzy adaptive sliding mode fault estimation and fixed-time fault-tolerant control for coupled spacecraft based on SE(3)[J]. Aerospace Science and Technology, 2022, 126: 107673.
|
24 |
HU Q L, ZHANG Y M, HUO X, et al. Adaptive integral-type sliding mode control for spacecraft attitude maneuvering under actuator stuck failures[J]. Chinese Journal of Aeronautics, 2011, 24(1): 32-45.
|
25 |
XIAO B, HU Q L, ZHANG Y M. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1605-1612.
|
26 |
ZHANG R S, DU H Y, WU Y S, et al. Fault detection and diagnosis for thrust drop of launch vehicles against disturbances[J]. Journal of Spacecraft and Rockets, 2023, 60(3): 924-941.
|
27 |
LI Y D, HU Q L, SHAO X D. Neural network-based fault diagnosis for spacecraft with single-gimbal control moment gyros[J]. Chinese Journal of Aeronautics, 2022, 35(7): 261-273.
|
28 |
聂小辉, 金磊. 核主元分析在航天器飞轮自主故障诊断的应用[J]. 北京航空航天大学学报, 2023, 49(8): 2119-2128.
|
|
NIE X H, JIN L. Application of kernel principal component analysis in autonomous fault diagnosis for spacecraft flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 2119-2128 (in Chinese).
|
29 |
SUO M L, ZHU B L, AN R M, et al. Data-driven fault diagnosis of satellite power system using fuzzy Bayes risk and SVM[J]. Aerospace Science and Technology, 2019, 84: 1092-1105.
|
30 |
闻新, 史超, 方紫帆. 基于小波神经网络的航天器故障诊断方法[J]. 兵工自动化, 2019,38(3): 59-64.
|
|
WEN X, SHI C, FANG Z F. Fault diagnosis meth-od of spacecraft based on wavelet neural network[J]. Ordnance Industry Auto-mation, 2019, 38(3): 59-64 (in Chinese).
|
31 |
刘伟杰, 谌颖. 航天器空间自主交会故障诊断与容错控制的集成设计[J]. 航天控制, 2015, 33(3): 38-44, 51.
|
|
LIU W J, CHEN Y. Integrated design of fault diagnosis and fault-tolerant control for spacecraft autonomous rendezvous[J]. Aerospace Control, 2015, 33(3): 38-44, 51 (in Chinese).
|
32 |
OPROMOLLA R, FASANO G, RUFINO G, et al. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences, 2017, 93: 53-72.
|
33 |
GAO C Y, ZHAO Q, DUAN G R. Robust actuator fault diagnosis scheme for satellite attitude control systems[J]. Journal of the Franklin Institute, 2013, 350(9): 2560-2580.
|
34 |
DUAN G R, PATTON R J. Robust fault detection using Luenberger-type unknown input observers-a parametric approach[J]. International Journal of Systems Science, 2001, 32(4): 533-540.
|
35 |
FONOD R, HENRY D, BORNSCHLEGL E, et al. Thruster fault detection, isolation and accommodation for an autonomous spacecraft[J]. IFAC Proceedings Volumes, 2014, 47(3): 10543-10548.
|
36 |
SUN S L, DENG Z L. Multi-sensor optimal information fusion Kalman filter[J]. Automatica, 2004, 40(6): 1017-1023.
|
37 |
SAGE A P, HUSA G W. Algorithms for sequential adaptive estimation of prior statistics[C]∥1969 IEEE Symposium on Adaptive Processes (8th) Decision and Control. Piscataway: IEEE Press, 1969: 61.
|
38 |
PARK H E, KIM Y R. Relative navigation for autonomous formation flying satellites using the state-dependent Riccati equation filter[J]. Advances in Space Research, 2016, 57(1): 166-182.
|
39 |
XIAO B, HU Q L, ZHANG Y M, et al. Fault-tolerant tracking control of spacecraft with attitude-only measurement under actuator failures[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 838-849.
|