首页 >

预测-五阶容积卡尔曼滤波方法

赵祥丹1,王彪2,王志胜2   

  1. 1. 南京航空航天大学
    2. 南京航空航天大学自动化学院
  • 收稿日期:2021-12-14 修回日期:2022-04-06 出版日期:2022-04-12 发布日期:2022-04-12
  • 通讯作者: 王志胜
  • 基金资助:
    贵州省科技计划项目;航空科学基金(重点实验室类)

Predictive fifth-degree cubature Kalman filter Method

Xiang-Dan Zhao1, Wang zhisheng   

  • Received:2021-12-14 Revised:2022-04-06 Online:2022-04-12 Published:2022-04-12
  • Contact: Wang zhisheng
  • Supported by:
    Research supported in part by the Guizhou Provincial Science and Technology Projects under Grant Guizhou-Sci-Co-Supp[2020]2Y044,;Research supported in part by the Key Laboratory Projects of Aeronautical Science Foundation of China under Grant 201928052006,

摘要: 为适用于强非线性、非高斯过程噪声系统,结合预测滤波(PF)与高阶容积卡尔曼滤波(HCKF),提出一种预测-五阶容积卡尔曼滤波(P5thCKF)方法。通过预测方法对系统模型进行实时矫正,进而将新模型代入到五阶容积卡尔曼滤波中进行实时递推状态估计。本文推导了五阶球面单形-径向积分准则,采用五阶球面单形积分准则处理球面积分,广义高斯-拉盖尔积分准则处理径向积分;描述了预测滤波方法并对模型误差调整量进行了推导。仿真实验表明,所提出的算法在非线性、非高斯过程噪声系统中比容积卡尔曼滤波以及五阶容积卡尔曼滤波具有更高的滤波精度。

关键词: 强非线性、非高斯过程噪声系统, 预测滤波, 高阶容积卡尔曼滤波, 预测-五阶容积卡尔曼滤波, 五阶球面单形积分准则, 广义-高斯拉盖尔积分准则

Abstract: In order to be suitable for strongly nonlinear and non-Gaussian process noise systems, combining predictive filtering (PF) and high-degree cubature Kalman filter (HCKF), a Method of predictive fifth-degree cubature Kalman filter (P5thCKF) is proposed. The prediction method was used to correct the system model in real time, and then the new model was substituted into the fifth-degree cubature Kalman filter(5thCKF) for real-time recursive state estimation. This paper derives the fifth-degree spherical simplex-radial integral criterion, uses the fifth-degree spherical simplex integral criterion to deal with the sphere area, and the generalized Gauss-Laguerre integral criterion deals with the radial integral; describes the predictive filtering method and derives the model error adjustment. Simulation results show that the proposed algorithm has higher filtering accuracy than volumetric Kalman filter and fifth-degree volumetric Kalman filter in nonlinear and non-Gaussian process noise systems.

Key words: Strongly nonlinear and non-Gaussian process noise systems, predictive filtering, high-degree cubature Kalman filter, predictive fifth-degree cubature Kalman filter, fifth-degree spherical simple integral criterion, generalized-Gauss Laguerre integral criterion

中图分类号: