首页 >

基于贝叶斯异常数据处理的火箭研制成本估算方法

徐振亮,汪小卫,宋征宇,陈蓉   

  1. 中国运载火箭技术研究院
  • 收稿日期:2025-08-07 修回日期:2025-11-01 出版日期:2025-11-03 发布日期:2025-11-03
  • 通讯作者: 宋征宇
  • 基金资助:
    亚轨道远程空天运输系统总体设计与控制技术

Liquid rocket development cost estimation method based on Bayesian abnormal data processing

  • Received:2025-08-07 Revised:2025-11-01 Online:2025-11-03 Published:2025-11-03
  • Contact: Zhengyu Song

摘要: 本文提出一种基于贝叶斯后验分布异常数据处理的复杂装备成本估算灰色GM(0, N)模型(多变量无导数灰色预测模型。GM表示Grey Model,灰色模型,0表示无导数项,N表示有N个变量),旨在提高复杂装备成本估算的准确性和可靠性。以液体火箭为研究案例,首先通过“3σ准则”剔除了可能存在的异常数据样本,提升了数据集的质量和模型的准确性。随后,利用贝叶斯估计方法计算了每单位研制成本的关键参数(如起飞质量)的均值和方差,为后续的异常值检测提供了科学依据。在此基础上,构建了分数阶累加的灰色GM(0, N)模型,并通过最小二乘法确定了各项未知参数,实现了对目标火箭研制成本的精确估算。实验结果表明,与多元线性回归模型和普通灰色GM(0, N)模型相比,本文提出的方法具有更高的估算精度和更好的鲁棒性。具体而言,本文方法的预测误差仅为2.6375%,而多元线性回归模型和普通灰色GM(0, N)模型的误差分别为20.7169%和14.2128%。此外,该方法不仅适用于液体火箭研制成本估算,还可以推广到其他复杂工程系统的成本估算问题中,为相关领域的科学研究和技术发展提供了有益参考。

关键词: 贝叶斯后验分布, 复杂装备成本估算, 分数阶累加, GM(0,, N)模型, 液体火箭研制成本估算

Abstract: A Bayesian posterior distribution-based abnormal data processing GM(0, N) model (Multivariate non-derivative grey prediction model. GM represents Grey Model, grey model, 0 indicates no derivative terms, N indicates there are N variables) is proposed for complex equipment cost estimation, aiming to enhance the accuracy and reliability of cost prediction for sophisticated systems. Taking rocket systems as a research case, potential abnormal data samples were first eliminated using the three-sigma criterion to improve dataset quality and model precision. Subsequently, Bayesian estimation methods were employed to calculate the mean and variance of critical development cost-per-unit parameters (e.g., takeoff mass), providing a scientific foundation for subsequent outlier detection. A fractional-order accumulation GM(0, N) model was subsequently constructed, where the unknown parameters were determined through the least squares method, enabling precise development cost estimation for target rocket configurations. Experimental results demonstrate that compared with multivariate linear regression models and conventional GM(0, N) models, the proposed method achieves superior estimation accuracy and enhanced robustness. Specifically, the prediction error of this methodology was reduced to 2.6375%, whereas the errors of multivariate linear regression and conventional GM(0, N) models reached 20.7169% and 14.2128% respectively. Furthermore, this methodology not only applies to liquid rocket development cost estimation but can also be extended to cost prediction problems in other complex engineering systems, providing valuable references for scientific research and technological development in related fields.

Key words: Bayesian posterior distribution, complex equipment cost estimation, fractional-order accumulation, GM(0,, N), model, Liquid rocket development cost estimation

中图分类号: