刘茜1,2,3, 胡殿印2,3,4(
), 王怡4, 王荣桥1,2,3, 陈高翔2,3,4, 孔维瀚1
收稿日期:2025-07-24
修回日期:2025-08-19
接受日期:2025-09-08
出版日期:2025-09-12
发布日期:2025-09-10
通讯作者:
胡殿印
E-mail:hdy@buaa.edu.cn
基金资助:
Xi LIU1,2,3, Dianyin HU2,3,4(
), Yi WANG4, Rongqiao WANG1,2,3, Gaoxiang CHEN2,3,4, Weihan KONG1
Received:2025-07-24
Revised:2025-08-19
Accepted:2025-09-08
Online:2025-09-12
Published:2025-09-10
Contact:
Dianyin HU
E-mail:hdy@buaa.edu.cn
Supported by:摘要:
介绍了航空发动机结构可靠性评估与设计的研究现状,分别从航空发动机结构可靠性设计流程、可靠性指标分析、不确定性来源及表征、可靠性度量方法、结构可靠性分析方法及结构可靠性优化设计方法等方面探讨了现有研究的进展、挑战以及发展趋势。航空发动机结构可靠性设计方法应用于工程实践仍存在一定挑战,在多源不确定性建模及传播、数据驱动与智能优化、可靠性试验验证、基于MBSE的可靠性设计等方面需持续开展研究,以期构建以数据驱动、模型主导、仿真试验融合为特征的新一代可靠性设计体系,支撑航空发动机结构可靠性、性能与设计效率的协同提升。
中图分类号:
刘茜, 胡殿印, 王怡, 王荣桥, 陈高翔, 孔维瀚. 航空发动机结构可靠性设计研究进展与展望[J]. 航空学报, 2025, 46(21): 532625.
Xi LIU, Dianyin HU, Yi WANG, Rongqiao WANG, Gaoxiang CHEN, Weihan KONG. Structural reliability design for aero-engines: Review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532625.
表 2
不确定性分类
| 类型 | 具体内容 | |
|---|---|---|
| 随机不确定性 | 材料性能 | 材料基本力学性能(弹性模量、屈服极限、强度极限、断裂韧度等)、材料微观结构(晶粒尺寸、晶体取向等)、缺陷特性(孔洞、夹杂、加工缺陷)材料断裂与疲劳特性(断裂韧性、疲劳寿命分布等)、热物性参数(热膨胀系数、热导率等)、材料退化(高温氧化、热腐蚀后性能下降)等 |
| 载荷/环境 | 热载荷(温度、温度梯度等)、机械载荷(转速、预紧力、推力变化等)、振动激励(气动力、装配不平衡力等)、工况变化(不同飞行载荷谱)、环境(湿度、盐雾、外物打伤)等 | |
| 工艺参数 | 几何尺寸、装配尺寸(如叶/盘榫接间隙、叶片安装角度偏角等)、表面完整性(表面粗糙度等)、缺陷检测、热处理工艺、涂层工艺等 | |
| 认知不确定性 | 样本量不足(试验件样本不足、小样本无法描述总体特征)、人工测量误差、失效物理机制不清(复杂的失效机制不明确,采用简化模型)、模型替代(代理模型代替失效物理模型) | |
表 4
结构可靠性分析方法对比
| 方法分类 | 方法名称 | 表达式/核心公式 | 优势 | 局限性 | 适用场景 |
|---|---|---|---|---|---|
近似 解析法 | FORM | 将极限状态函数在设计点处一阶线性化,通过可靠性指标衡量失效概率 | 计算效率高,适用于大多数结构 | 对非线性问题精度不足,需标准化处理 | 中低维、轻度非线性结构的初步可靠性分析 |
| SORM | 在FORM基础上加入曲率修正,提高非线性区域的精度 | 精度高于FORM,可处理中等非线性问题 | 计算复杂度较高,稳定性受限 | 中高非线性结构问题,精度要求更高场合 | |
三点估计法、 四阶矩法等 | 利用变量统计矩估计失效概率,实现可靠性指标的快速评估 | 推导简单,适合初步分析 | 精度有限,需假设变量分布 | 初期设计与不完全信息条件下的粗略估算 | |
数值 模拟法 | MCS | 利用大量随机样本对系统状态进行模拟统计,评估失效概率 | 不依赖极限状态函数形式,精度高,适用于任意变量分布 | 计算量大,低失效概率下效率低 | 高精度分析、模型高度非线性或高维复杂结构可靠性分析 |
| 改进抽样法 | 引导样本聚焦在失效域,提高小失效概率计算效率 | 显著提升效率,适合小概率事件分析 | 实施复杂,依赖领域知识 | 小概率失效分析,复杂边界问题 | |
代理 模型法 | 响应面模型 | 用多项式近似代替复杂模型,构建简化的极限状态函数 | 建模直观,适用于低维问题 | 拟合能力有限,难处理高度非线性 | 初步评估、低维模型替代分析 |
| 克里基模型、支持向量机模型、人工神经网络模型等 | 利用统计学习方法建立变量与响应间的近似模型 | 拟合精度高,可处理非线性复杂关系 | 训练成本高,样本需求大 | 高维复杂系统、有限元模型替代分析 | |
| 贝叶斯方法 | 综合先验知识和观测数据,动态更新模型参数和可靠性评估 | 适用于小样本,能处理认知不确定性 | 需合理先验,计算过程复杂 | 小样本结构分析、专家知识辅助设计 | |
| 最弱环理论 | 将结构看作由多个独立单元组成,任何一个单元失效即整体失效,体现微观缺陷控制整体强度 | 物理意义明确,适合疲劳与断裂分析 | 难以精确获取分布参数,模型推广性差 | 材料微缺陷主导失效(如高周疲劳、增材制造件) | |
| [1] | 王荣桥, 胡殿印, 申秀丽, 等. 航空发动机典型结构概率设计技术[J]. 航空制造技术, 2014, 57(7): 26-30. |
| WANG R Q, HU D Y, SHEN X L, et al. Probabilistic design technology on typical structure of aeroengine[J]. Aeronautical Manufacturing Technology, 2014, 57(7): 26-30 (in Chinese). | |
| [2] | 王荣桥, 胡殿印. 发动机结构可靠性设计理论及应用[M]. 北京: 科学出版社, 2017. |
| WANG R Q, HU D Y. Theory and application of engine structural reliability design[M]. Beijing: Science Press, 2017 (in Chinese). | |
| [3] | 孔瑞莲. 航空发动机可靠性工程[M]. 北京: 航空工业出版社, 1996. |
| KONG R L. Aeroengine reliability engineering[M]. Beijing: Aviation Industry Press, 1996 (in Chinese). | |
| [4] | Ministry of Defense U.K.. General specification for aircraft gas turbine engines: DEF STAN 00-971 [S]. London: U.K. Ministry of Defense, 1987. |
| [5] | IVEY P C, GRANT K R.The new potential for joint UK/US studies in sensor technology for HCF studies in gas turbine aero-engines[C]∥22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002. |
| [6] | 裴月. 涡轮盘结构概率设计体系研究[D]. 北京: 北京航空航天大学, 2007. |
| PEI Y. The research of probabilistic design system for turbine disk structure[D]. Beijing: Beihang University, 2007 (in Chinese) . | |
| [7] | 胡殿印, 裴月, 王荣桥, 等. 涡轮盘结构概率设计体系的研究[J]. 航空学报, 2008, 29(5): 1144-1149. |
| HU D Y, PEI Y, WANG R Q, et al. Research of probabilistic design system for turbine disk structure[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1144-1149 (in Chinese). | |
| [8] | U.S. Department of Defense. MIL-H engine structural integrity program[S]. Washington, D.C.: U.S. Department of Defense, 2002. |
| [9] | GE Aerospace. GE Aerospace awarded $5B contract to provide F110 engines for U.S. Air Force F-15 and F-16 fleets[EB/OL].(2025-03-14) [2025-04-13]. |
| [10] | Federal Aviation Administration. Advisory circular 33.70[R]. Washington, D.C.: U.S. Department of Transportation, 2009. |
| [11] | 中国人民解放军空军. 航空涡轮喷气和涡轮风扇发动机通用规范 [S]. 北京: 中国标准出版社, 2010. |
| Chinese People’s Liberation Army Air Force. General specification for turbojet and turbofan aeroengines: [S]. Beijing: China Standards Press, 2010 (in Chinese) . | |
| [12] | 中国民用航空局. CCAR-33R2 航空发动机适航规定 [S]. 北京: 中国民用航空出版社, 2016. |
| Civil Aviation Administration of China. Airworthiness standards for aeroengines: CCAR-33R2 [S]. Beijing: China Civil Aviation Press, 2016 (in Chinese) . | |
| [13] | 中国人民解放军空军驻上海地区军事代表局. 装备质量管理术语: [S]. 北京: 中国人民解放军总装备部, 2006. |
| Military Representative Bureau of the Chinese People’s Liberation Army Air Force in Shanghai Area. Terms for equipment quality management: [S]. Beijing: General Armaments Department of the Chinese People’s Liberation Army, 2006 (in Chinese) . | |
| [14] | WANG R Q, WANG S H, LIU X, et al. Reliability modeling and analysis for components in aero-engine from the perspective of system engineering[J]. Journal of Physics: Conference Series, 2025, 2954(1): 012045. |
| [15] | 彭鑫乾, 王越, 祝冠宇. 军用直升机航空电子产品系统可靠性提高方法及应用[J]. 现代电子技术, 2023, 46(8): 118-122. |
| PENG X Q, WANG Y, ZHU G Y. Reliability improvement method of military helicopter avionics system and its application[J]. Modern Electronics Technique, 2023, 46(8): 118-122 (in Chinese). | |
| [16] | DER K A, DITLEVSEN O. Aleatory or epistemic?Does it matter?[J]. Structural safety, 2009, 31(2): 105-112. |
| [17] | 廖鼎, 朱顺鹏, 牛晓鹏, 等. 机械结构概率疲劳研究: 现状及展望[J]. 机械工程学报, 2025, 61(8): 47-74. |
| LIAO D, ZHU S P, NIU X P, et al. Probabilistic fatigue research of mechanical structures: State-of-the-art and future trends[J]. Journal of Mechanical Engineering, 2025, 61(8): 47-74 (in Chinese). | |
| [18] | 李达. 轮盘疲劳寿命非局部概率分析方法研究[D]. 北京: 北京航空航天大学, 2017. |
| LI D. Research on non-local probabilistic analysis method of fatigue life for disk[D]. Beijing: Beihang University, 2017 (in Chinese). | |
| [19] | HU D Y, PAN J C, MI D, et al. Prediction of anisotropic LCF behavior for SLM Ti-6Al-4V considering the spatial orientation of defects[J]. International Journal of Fatigue, 2022, 158: 106734. |
| [20] | WANG R Q, KONG W H, CAO G J, et al. Zone-based failure risk assessment of fatigue crack growth caused by initial defects in powder turbine disc[J]. Quality and Reliability Engineering International, 2024, 40(5): 2381-2398. |
| [21] | 常宇博. 考虑真实载荷谱的涡轮盘强度分析[D]. 北京: 北京航空航天大学, 2008. |
| CHANG Y B. Strength analysis of turbine disk considering real load spectrum[D]. Beijing: Beihang University, 2008 (in Chinese) . | |
| [22] | 李斌潮, 唐靖, 殷之平. 基于频率雨流计数法的发动机振动疲劳载荷谱编制[J]. 航空工程进展, 2021, 12(1): 24-29. |
| LI B C, TANG J, YIN Z P. The load spectrum compilation of engine vibration fatigue based on frequency rain-flow counting method[J]. Advances in Aeronautical Science and Engineering, 2021, 12(1): 24-29 (in Chinese). | |
| [23] | U.S. Department of Defense. MIL-H : Metallic materials and elements for aerospace vehicle structures[S]. Washington, D.C.: U.S. Department of Defense, 2003. |
| [24] | LI H, LIU Y. Load spectrum generation for aero-engine components based on flight data clustering[J]. Aerospace Science and Technology, 2020, 105: 106052. |
| [25] | WHEELER O E. Spectrum loading and crack growth[J]. Journal of Basic Engineering, 1972, 94(1): 181-186. |
| [26] | WOLF E. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1): 37-45. |
| [27] | CHABOCHE J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. International Journal of Plasticity, 1989, 5(3): 247-302. |
| [28] | FATEMI A, YANG L. Cumulative fatigue damage and life prediction theories:A survey of the state of the art for homogeneous materials[J]. International Journal of Fatigue, 1998, 20(1): 9-34. |
| [29] | 周杰. 航空发动机涡轮叶片疲劳寿命及可靠性分析[D]. 成都: 电子科技大学, 2019. |
| ZHOU J. Fatigue life prediction and reliability analysis of aero-engine turbine blades[D]. Chengdu: University of Electronic Science and Technology of China, 2019 (in Chinese). | |
| [30] | FERSON S, KREINOVICH V, GRINZBURG L, et al. Constructing probability boxes and Dempster-Shafer structures[R]. Albuquerque: Sandia National Laboratories, 2015. |
| [31] | OBERGUGGENBERGER M, FELLIN W. Reliability bounds through random sets: Non-parametric methods and geotechnical applications[J]. Computers & Structures, 2008, 86(10): 1093-1101. |
| [32] | ZHANG H, MULLEN R L, MUHANNA R L. Interval Monte Carlo methods for structural reliability[J]. Structural Safety, 2010, 32(3): 183-190. |
| [33] | 刘茜. 基于不确定性理论的多失效模式轮盘可靠性分析及设计方法研究[D]. 北京: 北京航空航天大学, 2020. |
| LIU X. Research on reliability analysis and design optimization for aero-engine disc with multi-failure modes based on uncertainty theory[D]. Beijing: Beihang University, 2020 (in Chinese) . | |
| [34] | 鄢林. 考虑表面状态的榫接结构微动疲劳寿命评估方法[D]. 北京: 北京航空航天大学, 2024. |
| YAN L. Fretting fatigue life assessment of turbine attachment considering surface state[D]. Beijing: Beihang University, 2024 (in Chinese) . | |
| [35] | THOMPSON R B, BRASCHE L, FORSYTH D, et al. Recent advances in model-assisted probability of detection[C]∥Proceedings of the 4th European-American Workshop on the Reliability of NDE. 2009. |
| [36] | 沙正骁, 刚铁, 梁菁. 粉末涡轮盘夹杂缺陷的超声检出概率[J]. 无损检测, 2019, 41(4): 24-29. |
| SHA Z X, GANG T, LIANG J. Ultrasonic inspection POD for inclusions within powder metallurgical turbine disks[J]. Nondestructive Testing Technologying, 2019, 41(4): 24-29 (in Chinese). | |
| [37] | 张春晓, 易威, 王志平, 等. 无损检测可靠性评价技术及实现[J]. 数学的实践与认识, 2020, 50(19): 269-275. |
| ZHANG C X, YI W, WANG Z P, et al. Evaluation on reliability of nondestructive testing technology and implementation[J]. Mathematics in Practice and Theory, 2020, 50(19): 269-275 (in Chinese). | |
| [38] | LIU H Z, YANG D S, YAN H, et al. Probability of detection and anomaly distribution modeling for surface defects in tenon-groove structures of aeroengine disks[J]. Chinese Journal of Aeronautics, 2025, 38(10): 103643. |
| [39] | 胡殿印, 刘茜, 毛建兴, 等. 航空发动机涡轮盘损伤容限分析理论与方法[M]. 北京: 北京航空航天大学出版社, 2024: 184-199. |
| HU D Y, LIU X, MAO J X, et al. Theory and methodology of damage tolerance analysis for aero-engine turbine disc[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2024: 184-199 (in Chinese). | |
| [40] | KONG W H, WANG R Q, LIU X, et al. Probabilistic damage tolerance assessment of turbine disk multiple bolt holes considering probability of detection[C]∥Advances in Transdisciplinary Engineering, Volume 71: Mechanical and Aerospace Engineering. IOS Press, 2025: 656-666. |
| [41] | XU J, CHENG X, LIN D, et al. Analysis of pressure pulsation and its correlation to energy dissipation in centrifugal pump with bionic optimal impeller base on proper orthogonal decomposition[J]. Thermal Science and Engineering Progress, 2025, 64: 103822. |
| [42] | LIU P L, DER KIUREGHIAN A. Multivariate distribution models with prescribed marginals and covariances[J]. Probabilistic Engineering Mechanics, 1986, 1(2): 105-112 |
| [43] | 檀中强, 潘骏, 胡明, 等. 基于椭球模型的机构非精确概率可靠性分析方法[J]. 机械工程学报, 2019, 55(2): 168-176. |
| TAN Z Q, PAN J, HU M, et al. Imprecise probabilistic reliability analysis method for mechanism based on ellipsoid model[J]. Journal of Mechanical Engineering, 2019, 55(2): 168-176 (in Chinese). | |
| [44] | LIU X, WANG R Q, HU D Y, et al. Rigorous uncertainty quantification with correlated random variables from multiple sources[J]. Engineering Failure Analysis, 2021, 121: 105114. |
| [45] | 王荣桥, 胡殿印. 镍基单晶涡轮叶片热机械疲劳理论[M]. 北京: 科学出版社, 2021: 7-15. |
| WANG R Q, HU D Y. Thermomechanical fatigue theory of nickel-based single crystal turbine blades[M]. Beijing: Science Press, 2021: 7-15 (in Chinese). | |
| [46] | 傅惠民. 线性异方差回归分析[J]. 航空学报, 1994, 15(3): 295-302. |
| FU H M. Linear variance regression analysis[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(3): 295-302 (in Chinese). | |
| [47] | 傅惠民, 刘成瑞. S-N曲线和P-S-N曲线小子样测试方法[J]. 机械强度, 2006, 28(4): 552-555. |
| FU H M, LIU C R. Small sample test method for S-N and P-S-N curves[J]. Journal of Mechanical Strength, 2006, 28(4): 552-555 (in Chinese). | |
| [48] | 傅惠民, 邢军伟, 王治华. 平均数据ε-N曲线和P-ε-N曲线小子样推断方法[J]. 机械强度, 2010, 32(6): 989-992. |
| FU H M, XING J W, WANG Z H. Small sample estimation method for ε-N and P-ε-N curves utilizing mean data[J]. Journal of Mechanical Strength, 2010, 32(6): 989-992 (in Chinese). | |
| [49] | 傅惠民, 刘成瑞. ε-N曲线和P-ε-N曲线整体推断方法[J]. 航空动力学报, 2006, 21(6): 957-961. |
| FU H M, LIU C R. Integral inference method for ε-N and P-ε-N curves[J]. Journal of Aerospace Power, 2006, 21(6): 957-961 (in Chinese). | |
| [50] | 高阳, 白广忱, 张瑛莉. 涡轮盘低循环疲劳寿命的概率分析[J]. 航空动力学报, 2009, 24(4): 804-809. |
| GAO Y, BAI G C, ZHANG Y L. Probability analysis for the low cycle fatigue life of a turbine disk[J]. Journal of Aerospace Power, 2009, 24(4): 804-809 (in Chinese). | |
| [51] | 高阳. 航空发动机涡轮盘低循环疲劳可靠性分析[D]. 北京: 北京航空航天大学, 2008. |
| GAO Y. Reliability analysis of LCF for turbine disks in aeroengines[D]. Beijing: Beihang University, 2008 (in Chinese) . | |
| [52] | KENNEDY M C, O’HAGAN A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2001, 63(3): 425-464. |
| [53] | 王荣桥, 刘飞, 胡殿印, 等. 基于贝叶斯理论的低循环疲劳寿命模型不确定性量化[J]. 航空学报, 2017, 38(9): 220832. |
| WANG R Q, LIU F, HU D Y, et al. Uncertainty quantification in low cycle fatigue life model based on Bayesian theory[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 220832 (in Chinese). | |
| [54] | ZHU S P, HUANG H Z, SMITH R, et al. Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys[J]. Probabilistic Engineering Mechanics, 2013, 34: 114-122. |
| [55] | LIU X, HU D Y, WANG R Q, et al. Calibration and validation of fatigue lifetime model in complex structures based on multi-level data[J]. International Journal of Fatigue, 2022, 159: 106783. |
| [56] | ZHANG J, MAHADEVAN S. Stochastic response surface method for reliability analysis[J]. Probabilistic Engineering Mechanics, 2000, 15(4): 307-317. |
| [57] | SANTNER T J, WILLIAMS B J, NOTZ W I. The design and analysis of computer experiments[M]. New York : Springer New York, 2018: 30-42. |
| [58] | WANG R Q, LIU X, HU D Y, et al. Zone-based reliability analysis on fatigue life of GH720Li turbine disk concerning uncertainty quantification[J]. Aerospace Science and Technology, 2017, 70: 300-309. |
| [59] | BICHON B J, ELDRED M S, SWILER L P, et al. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA Journal, 2008, 46(10): 2459-2468. |
| [60] | ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2): 145-154. |
| [61] | GAO J X, AN Z W. A new probability model of residual strength of material based on interference theory[J]. International Journal of Fatigue, 2019, 118: 202-208. |
| [62] | URBINA A, MAHADEVAN S, PAEZ T L. Quantification of margins and uncertainties of complex systems in the presence of aleatoric and epistemic uncertainty[J]. Reliability Engineering & System Safety, 2011, 96(9): 1114-1125. |
| [63] | LUCAS L J, OWHADI H, ORTIZ M. Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(51-52): 4591-4609. |
| [64] | COLLINS J D H. Latent variable models for quantification of margins and uncertainties[R]. Los Alamos:Los Alamos National Lab. (LANL), 2013. |
| [65] | PEPIN J, RUTHERFORD A, HEMEZ F. Defining a practical QMU metric[C]∥49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 16th AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2008. |
| [66] | MCDIARMID C. On the method of bounded differences[M]∥Surveys in Combinatorics. Cambridge: Cambridge University Press, 1989: 148-188. |
| [67] | The Editorial Department of International Aviation. The engine stress criteria (EGD-3) of spey engine MK202[M]. Beijing: The Editorial Department of International Aviation, 1979. |
| [68] | CORNELL C A. A probability-based structural code[J]. Journal of the American Concrete Institute, 1969, 66(12): 974-985. |
| [69] | RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5): 489-494. |
| [70] | 吕震宙. 结构机构可靠性及可靠性灵敏度分析[M]. 北京: 科学出版社, 2009: 9-36. |
| LV Z Z. Structural mechanism reliability and reliability sensitivity analysis[M]. Beijing: Science Press, 2009: 9-36 (in Chinese). | |
| [71] | 贡金鑫. 结构可靠指标求解的一种新的迭代方法[J]. 计算结构力学及其应用, 1995, 12(3): 369-373. |
| GONG J X. A new algorithm for solving the structural reliability index[J]. Chinese Journal of Computational Mechanics, 1995, 12(3): 369-373 (in Chinese). | |
| [72] | KARL B. Asymptotic approximations for multinormal integrals[J]. Journal of Engineering Mechanics, 1984, 110(3): 357-366. |
| [73] | WANG Y G. An enhanced second-order method in structural reliability analyses[J]. Structures, 2025, 80: 109766. |
| [74] | GORMAN M R. Reliability of structural systems[D]. Cleveland: Case Western Reserve University, 1980. |
| [75] | SEO H S, KWAK B M. Efficient statistical tolerance analysis for general distributions using three-point information[J]. International Journal of Production Research, 2002, 40(4): 931-944. |
| [76] | LU Z Z, SONG J, SONG S F, et al. Reliability sensitivity by method of moments[J]. Applied Mathematical Modelling, 2010, 34(10): 2860-2871. |
| [77] | LEONEL E D, CHATEAUNEUF A, VENTURINI W S, et al. Coupled reliability and boundary element model for probabilistic fatigue life assessment in mixed mode crack propagation[J]. International Journal of Fatigue, 2010, 32(11): 1823-1834. |
| [78] | ESLAMI R, RIESCH-OPPERMANN H, KRAFT O. Prediction of multiaxial high cycle fatigue at small scales based on a micro-mechanical model[J]. International Journal of Fatigue, 2016, 83: 66-74. |
| [79] | DONGARRA J, SULLIVAN F. Guest editors’ introduction: The top 10 algorithms[J]. Computing in Science and Engineering, 2000, 2(1): 22-23. |
| [80] | LIU Y M, MAHADEVAN S. Probabilistic fatigue life prediction of multidirectional composite laminates[J]. Composite Structures, 2005, 69(1): 11-19. |
| [81] | BAPTISTA C, REIS A, NUSSBAUMER A. Probabilistic S-N curves for constant and variable amplitude[J]. International Journal of Fatigue, 2017, 101: 312-327. |
| [82] | GOLDEN P J, MILLWATER H R, YANG X B. Probabilistic fretting fatigue life prediction of Ti-6Al-4V[J]. International Journal of Fatigue, 2010, 32(12): 1937-1947. |
| [83] | 员婉莹, 李逢源, 黄博, 等. 可靠性分析改进元模型重要抽样算法[J]. 航空学报, 2025, 46(7): 330738. |
| YUN W Y, LI F Y, HUANG B, et al. Enhanced metamodel-based importance sampling method for reliability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 330738 (in Chinese). | |
| [84] | PRADLWARTER H J, SCHUËLLER G I, KOUTSOURELAKIS P S, et al. Application of line sampling simulation method to reliability benchmark problems[J]. Structural Safety, 2007, 29(3): 208-221. |
| [85] | 李强, 冯元生. 解结构可靠性问题的改进分层抽样法[J]. 航空学报, 1995, 16(5): 513-520. |
| LI Q, FENG Y S. An improved stratified sampling Monte-Carlo method to analyze the reliability of structural systems[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(5): 513-520 (in Chinese). | |
| [86] | ZIHA K. Descriptive sampling in structural safety[J]. Structural Safety, 1995, 17(1): 33-41. |
| [87] | GUO H Y, LUO C Q, ZHU S P, et al. Machine learning-based enhanced Monte Carlo simulation for low failure probability structural reliability analysis[J]. Structures, 2025, 74: 108530. |
| [88] | BANDLER J W, CHENG Q S, DAKROURY S A, et al. Space mapping: The state of the art[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 337-361. |
| [89] | WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4): 370-380. |
| [90] | FALSONE G, IMPOLLONIA N. About the accuracy of a novel response surface method for the analysis of finite element modeled uncertain structures[J]. Probabilistic Engineering Mechanics, 2004, 19(1-2): 53-63. |
| [91] | KAYMAZ I, MCMAHON C A. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2005, 20(1): 11-17. |
| [92] | VAN BEERS W C M, KLEIJNEN J P C. Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping[J]. European Journal of Operational Research, 2008, 186(3): 1099-1113. |
| [93] | SIMPSON T W, BOOKER A J, GHOSH D, et al. Approximation methods in multidisciplinary analysis and optimization:A panel discussion[J]. Structural and Multidisciplinary Optimization, 2004, 27(5): 302-313. |
| [94] | GUO Z W, BAI G C. Application of least squares support vector machine for regression to reliability analysis[J]. Chinese Journal of Aeronautics, 2009, 22(2): 160-166. |
| [95] | LI C, WEN J R, WAN J, et al. An enhanced second-order method in structural reliability analyses[J]. Reliability Engineering & System Safety, 2024(246): 110064. |
| [96] | GOMES H M, AWRUCH A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety, 2004, 26(1): 49-67. |
| [97] | 冯蕴雯, 腾达, 路成, 等. 机理与生成对抗代理建模融合的飞机系统可靠性评估[J]. 航空学报, 2025, 46(5): 230948. |
| FENG Y W, TENG D, LU C, et al. Integrated mechanism and generative adversarial surrogate modeling for aircraft systems reliability evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 230948 (in Chinese). | |
| [98] | MAO J X, HU D Y, LI D, et al. Novel adaptive surrogate model based on LRPIM for probabilistic analysis of turbine disc[J]. Aerospace Science and Technology, 2017, 70: 76-87. |
| [99] | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
| [100] | GOODFELLOW I, POUGET A J, MIRZA M, et al. Generative adversarial nets[C]∥NIPS’ 14: Proceedings of the 28th International Conference on Neural Information Processing Systems, 2014: 2672-2680. |
| [101] | ZHANG S L, WANG L Y, ZHU S P, et al. Physics-informed neural network for creep-fatigue life prediction of Inconel 617 and interpretation of influencing factors[J]. Materials & Design, 2024, 245: 113267. |
| [102] | XIAO X, SONG M, LIU X. A reliable and adaptive prediction framework for nuclear power plant system through an improved Transformer model and Bayesian uncertainty analysis[J]. Reliability Engineering and System Safety, 2025, 261: 111076. |
| [103] | ZHANG R X, MAHADEVAN S. Model uncertainty and Bayesian updating in reliability-based inspection[J]. Structural Safety, 2000, 22(2): 145-160. |
| [104] | PARK I, AMARCHINTA H K, GRANDHI R V. A Bayesian approach for quantification of model uncertainty[J]. Reliability Engineering & System Safety, 2010, 95(7): 777-785. |
| [105] | AN D, CHOI J H. Efficient reliability analysis based on Bayesian framework under input variable and metamodel uncertainties[J]. Structural and Multidisciplinary Optimization, 2012, 46(4): 533-547. |
| [106] | PESSARD E, BELLETT D, MOREL F, et al. A mechanistic approach to the Kitagawa-Takahashi diagram using a multiaxial probabilistic framework[J]. Engineering Fracture Mechanics, 2013, 109: 89-104. |
| [107] | SADEK S, OLSSON M. A probabilistic method for multiaxial HCF based on highly loaded regions below the threshold depth[J]. International Journal of Fatigue, 2016, 87: 91-101. |
| [108] | QVALE P, HÄRKEGÅRD G. A simplified method for weakest-link fatigue assessment based on finite element analysis[J]. International Journal of Fatigue, 2017, 100: 78-83. |
| [109] | ZHANG J M, LI J H, WU S C, et al. High-cycle and very-high-cycle fatigue lifetime prediction of additively manufactured AlSi10Mg via crystal plasticity finite element method[J]. International Journal of Fatigue, 2022, 155: 106577. |
| [110] | LIU X, WANG R Q, HU D Y, et al. A calibrated weakest-link model for probabilistic assessment of LCF life considering Notch size effects[J]. International Journal of Fatigue, 2020, 137: 105631. |
| [111] | ZHANG W, WANG W, PENG Y, et al. A gamma process-based degradation model for health prognosis of aerospace components under dynamic operating conditions[J]. Reliability Engineering & System Safety, 2019, 185: 341-351. |
| [112] | 王宁晨, 胡殿印, 刘茜, 等. 基于Wiener过程的涡轮盘榫槽裂纹扩展可靠性分析[J]. 航空动力学报, 2022, 37(11): 2440-2447. |
| WANG N C, HU D Y, LIU X, et al. Reliability analysis of crack growth in turbine disk mortise based on Wiener process[J]. Journal of Aerospace Power, 2022, 37(11): 2440-2447 (in Chinese). | |
| [113] | CAO G J, LIU X, HU D Y, et al. Stochastic modeling of fatigue crack growth for bolt holes in turbine disc[J]. International Journal of Fatigue, 2023, 169: 107504. |
| [114] | LIU X, WANG R Q, HU D Y, et al. Degradation analysis on high-cycle bending fatigue for woven SiC/SiC composites based on Wiener process model[J]. Materials & Design, 2021, 198: 109295. |
| [115] | 冯俊锋. 基于高斯过程的航空发动机齿轮结构时变可靠性分析[D]. 成都: 电子科技大学, 2024. |
| FENG J F. Structural time-varying reliability analysis of aeroengine gear based on Gaussian process[D]. Chengdu: University of Electronic Science and Technology of China, 2024 (in Chinese). | |
| [116] | LEE D, KWON K. Dynamic Bayesian network model for comprehensive risk analysis of fatigue-critical structural details[J]. Reliability Engineering & System Safety, 2023, 229: 108834. |
| [117] | ZHAO Y, LIU Y P, HU D Y, et al. Advanced dynamic Bayesian network-based real-time prediction of fatigue crack propagation under variable amplitude loading[J]. Engineering Fracture Mechanics, 2025, 322: 111174. |
| [118] | BICHON B J, MCFARLAND J M, MAHADEVAN S. Efficient surrogate models for reliability analysis of systems with multiple failure modes[J]. Reliability Engineering & System Safety, 2011, 96(10): 1386-1395. |
| [119] | LIU Y, LIU X, HU D Y, et al. An efficient global reliability analysis method for turbine disc’s multi-failure modes considering importance distribution technology[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1043(3): 032023. |
| [120] | BAI G C, FEI C W. Distributed collaborative response surface method for mechanical dynamic assembly reliability design[J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1160-1168. |
| [121] | SONG L K, WEN J, FEI C W, et al. Distributed collaborative probabilistic design of multi-failure structure with fluid-structure interaction using fuzzy neural network of regression[J]. Mechanical Systems and Signal Processing, 2018, 104: 72-86. |
| [122] | SONG L K, TAO F, CHOY Y, et al. Cascade sampling-driven block mapping for coupled reliability evaluation of turbine cooling systems[J]. Mechanical Systems and Signal Processing, 2025, 236: 113008. |
| [123] | SONG L K, TAO F, LI X Q, et al. Physics-embedding multi-response regressor for time-variant system reliability assessment[J]. Reliability Engineering & System Safety, 2025, 263: 111262. |
| [124] | SONG L K, LI X Q, ZHU S P, et al. Cascade ensemble learning for multi-level reliability evaluation[J]. Aerospace Science and Technology, 2024, 148: 109101. |
| [125] | NAVARRO J, DURANTE F. Copula-based representations for the reliability of the residual lifetimes of coherent systems with dependent components[J]. Journal of Multivariate Analysis, 2017, 158: 87-102. |
| [126] | GAO Y. Multivariate estimation of distribution algorithm with Laplace transform Archimedean copula[C]∥2009 International Conference on Information Engineering and Computer Science. Piscataway: IEEE Press, 2009. |
| [127] | WANG R Q, LIU X, HU D Y, et al. Reliability assessment for system-level turbine disc structure using LRPIM-based surrogate model considering multi-failure modes correlation[J]. Aerospace Science and Technology, 2019, 95: 105422. |
| [128] | AAS K, CZADO C, FRIGESSI A, et al. Pair-copula constructions of multiple dependence[J]. Insurance: Mathematics and Economics, 2009, 44(2): 182-198. |
| [129] | LIU X, WANG R Q, HU D Y, et al. Reliability-based design optimization approach for compressor disc with multiple correlated failure modes[J]. Aerospace Science and Technology, 2021, 110: 106493. |
| [130] | MURTHY P N, SUBRAMANIAN G. Minimum weight analysis based on structural reliability[J]. AIAA Journal, 1968, 6(10): 2037-2039. |
| [131] | 蒋琛, 邱浩波, 高亮. 随机不确定性下的可靠性设计优化研究进展[J]. 中国机械工程, 2020, 31(2): 190-205. |
| JIANG C, QIU H B, GAO L. Research progresses in reliability-based design optimization under aleatory uncertainties[J]. China Mechanical Engineering, 2020, 31(2): 190-205 (in Chinese). | |
| [132] | NIKOLAIDIS E, BURDISSO R. Reliability based optimization: A safety index approach[J]. Computers & Structures, 1988, 28(6): 781-788. |
| [133] | TU J, CHOI K K, PARK Y H. A new study on reliability-based design optimization[J]. Journal of Mechanical Design, 1999, 121(4): 557-564. |
| [134] | LEE J O, YANG Y S, RUY W S. A comparative study on reliability-index and target-performance-based probabilistic structural design optimization[J]. Computers & Structures, 2002, 80(3-4): 257-269. |
| [135] | MADSEN H O, HANSEN P F. A comparison of some algorithms for reliability based structural optimization and sensitivity analysis[C]∥Reliability and Optimization of Structural Systems ’91. 1992. |
| [136] | CHEN X G, HASSELMAN T, NEILL D, et al. Reliability based structural design optimization for practical applications[C]∥38th Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1997. |
| [137] | WU Y T, SHIN Y, SUES R, et al. Safety-factor based approach for probability-based design optimization[C]∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001. |
| [138] | DU X P, CHEN W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of Mechanical Design, 2004, 126(2): 225-233. |
| [139] | AOUES Y, CHATEAUNEUF A. Benchmark study of numerical methods for reliability-based design optimization[J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 277-294. |
| [140] | 尹泽勇, 米栋, 钱正明, 等. 多学科设计优化在航空发动机领域的应用[J]. 航空动力, 2018(1): 36-39. |
| YIN Z Y, MI D, QIAN Z M, et al. The application of multidisciplinary design optimization on aero engine[J]. Aerospace Power, 2018(1): 36-39 (in Chinese). | |
| [141] | MCDONALD M, MAHADEVAN S. All-at-once multidisciplinary optimization with system and component-level reliability constraints[C]∥12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008. |
| [142] | ZHANG X D, HUANG H Z. Sequential optimization and reliability assessment for multidisciplinary design optimization under aleatory and epistemic uncertainties[J]. Structural and Multidisciplinary Optimization, 2010, 40(1): 165-175. |
| [143] | SOBIESKI J. Optimization by decomposition: A step from hierarchic to non-hierarchic systems[C]∥2nd NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, 1988. |
| [144] | ALEXANDROV N M, LEWIS R M. Comparative properties of collaborative optimization and other approaches to MDO[R]. Washington,D.C.:NASA Langley Research Center, 1999. |
| [145] | AHN J, KWON J H. An efficient strategy for reliability-based multidisciplinary design optimization using BLISS[J]. Structural and Multidisciplinary Optimization, 2006, 31(5): 363-372. |
| [146] | 贾志刚. 涡轮叶片多重精度多学科优化设计方法研究[D]. 北京: 北京航空航天大学, 2012. |
| JIA Z G. Research on multi-precision multidisciplinary design optimization of turbine blade[D]. Beijing: Beihang University, 2012 (in Chinese). | |
| [147] | PADMANABHAN D, BATILL S. Reliability based optimization using approximations with applications to multi-disciplinary system design[C]∥40th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2002. |
| [148] | 王荣桥, 贾志刚, 杨俊杰, 等. 基于多层优化策略的涡轮盘叶设计研究[J]. 航空动力学报, 2012, 27(6): 1201-1209. |
| WANG R Q, JIA Z G, YANG J J, et al. Study on disk and blade design based on multi-layeroptimization strategy[J]. Journal of Aerospace Power, 2012, 27(6): 1201-1209 (in Chinese). | |
| [149] | 杨俊杰, 王荣桥. CO与BLISS-2000方法在涡轮叶片多学科优化中的应用[C]∥第二届航空航天工程与信息技术国际会议 (AEIT 2012 V2). 2012: 478-485. |
| YANG J J, WANG R Q. CO and BLISS-2000 in MDO on aircraft engine turbine blades[C]∥Proceedings of the 2012 2nd International Conference on Aerospace Engineering and Information Technology (AEIT 2012, Volume 2). 2012: 478-485 (in Chinese). | |
| [150] | 杨俊杰, 王荣桥, 樊江, 等. 涡轮叶片的气动-热-结构多学科设计优化研究[J]. 航空动力学报, 2010, 25(3): 617-622. |
| YANG J J, WANG R Q, FAN J, et al. Multi-disciplinary aero-dynamic-thermal-structure design optimization for turbine blade[J]. Journal of Aerospace Power, 2010, 25(3): 617-622 (in Chinese). | |
| [151] | KHARMANDA G, OLHOFF N, MOHAMED A, et al. Reliability-based topology optimization[J]. Structural and Multidisciplinary Optimization, 2004, 26(5): 295-307. |
| [152] | 李鹏, 姚卫星. 结构元件可靠性拓扑优化设计方法评述[J]. 力学与实践, 2015, 37(4): 466-474. |
| LI P, YAO W X. Review of reliability-based topology optimization methods for structural component[J]. Mechanics in Engineering, 2015, 37(4): 466-474 (in Chinese). | |
| [153] | KIM S R, PARK J Y, LEE W G, et al. Reliability-based topology optimization based on evolutionary structural optimization[J]. International Journal of Mechanics System Science Engineering, 2007, 1(3): 135-139. |
| [154] | SILVA M, TORTORELLI D A, NORATO J A, et al. Component and system reliability-based topology optimization using a single-loop method[J]. Structural and Multidisciplinary Optimization, 2010, 41(1): 87-106. |
| [155] | PATEL N, RENAUD J, AGARWAL H, et al. Reliability based topology optimization using the hybrid cellular automaton method[C]∥46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. |
| [156] | HU D Y, WANG Y, LIU X, et al. Reliability-based topology optimization using LRPIM surrogate model considering local stress and displacement constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 432: 117460. |
| [157] | CHEN Z Z, WU Z H, LI X K, et al. A multiple-design-point approach for reliability-based design optimization[J]. Engineering Optimization, 2019, 51(5): 875-895. |
| [158] | LI G, YANG H, ZHAO G. A new efficient decoupled reliability-based design optimization method with quantiles[J]. Structural and Multidisciplinary Optimization, 2020, 61(2): 635-647. |
| [159] | MOUSTAPHA M, SUDRET B, BOURINET J M, et al. Quantile-based optimization under uncertainties using adaptive Kriging surrogate models[J]. Structural and Multidisciplinary Optimization, 2016, 54(6): 1403-1421. |
| [160] | ZHENG J, YUAN L, JIANG C, et al. An efficient decoupled reliability-based topology optimization method based on a performance shift strategy[J]. Journal of Mechanical Design, 2023, 145(6): 061705. |
| [1] | 姚斡维, 刘高文, 陈燕, 孔晓治, 林阿强. 高性能涡轮低位预旋供气系统正向设计[J]. 航空学报, 2025, 46(7): 130832-130832. |
| [2] | 何雅玲, 姜涛, 杜燊, 徐国强. 飞行包线内空气换热器能力边界研究及进展[J]. 航空学报, 2025, 46(5): 531745-531745. |
| [3] | 屈峰, 王青, 程少文, 王开强. 基于气动/轨迹/控制耦合的飞/发一体高超声速飞机气动外形优化设计[J]. 航空学报, 2025, 46(4): 130874-130874. |
| [4] | 冯蕴雯, 崔宇航, 贺谦, 薛小锋, 陆俊. 基于ISMA-Stacking集成建模和贝叶斯融合的全机结构试验可靠性评估[J]. 航空学报, 2025, 46(21): 532365-532365. |
| [5] | 杨超, 谭玉婷, 王伟, 赵彦, 余雄庆. 融入低声爆设计的超声速民机概念方案多学科优化[J]. 航空学报, 2025, 46(20): 531457-531457. |
| [6] | 李军府, 赵彦, 王伟, 谢露, 张辉, 王龙, 袁麟, 谭玉婷, 宁宇. 新一代超声速客机总体气动技术挑战与展望[J]. 航空学报, 2025, 46(20): 532069-532069. |
| [7] | 杨显赵, 刘高文, 郭令颖, 马佳乐, 林阿强. 高温降涡轮高位预旋供气系统设计[J]. 航空学报, 2025, 46(2): 130672-130672. |
| [8] | 曲桂娴, 刘冬阳, 杨旭, 邱天, 刘传凯, 丁水汀, 袁树峥, 郭侃. 基于传感器时序信息增强的剩余寿命预测方法[J]. 航空学报, 2025, 46(17): 231634-231634. |
| [9] | 姬志行, 王彦哲, 梅晓雪, 程莉雯, 许子博, 王占学. 氢能飞机及航空动力多学科总体耦合设计[J]. 航空学报, 2025, 46(17): 231712-231712. |
| [10] | 边杰, 王四季, 刘飞春. 航空发动机鼠笼弹支设计与试验研究进展[J]. 航空学报, 2025, 46(17): 231571-231571. |
| [11] | 王志伟, 查天衡, 刘博文, 陈燕, 林阿强, 刘高文. 高转速旋转篦齿流动与温升特性实验[J]. 航空学报, 2025, 46(15): 131534-131534. |
| [12] | 安凯, 黄伟, 王振国, 徐小平, 孟玉珊. AI驱动高速飞行器多学科发展知识图谱分析[J]. 航空学报, 2024, 45(S1): 730566-730566. |
| [13] | 尹泽勇, 李概奇, 石建成, 银越千. 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024, 45(7): 29713-029713. |
| [14] | 陈树生, 贾苜梁, 刘衍旭, 高正红, 向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595-629595. |
| [15] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

