| [1] |
邓景辉. 高速直升机关键技术与发展[J]. 航空学报, 2024, 45(9): 529085.
|
|
DENG J H. Key technologies and development for high-speed helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085 (in Chinese).
|
| [2] |
李文智, 曹瑶琴, 何志平. 基于材料及结构的直升机噪声抑制技术研究进展[J]. 航空材料学报, 2022, 42(2): 1-10.
|
|
LI W Z, CAO Y Q, HE Z P. Research progress of helicopter noise suppression technology based on materials/structures[J]. Journal of Aeronautical Materials, 2022, 42(2): 1-10 (in Chinese).
|
| [3] |
杨一栋, 袁卫东. 直升机高次谐波主动抑振技术[J]. 航空学报, 1996, 17(5): 566-571.
|
|
YANG Y D, YUAN W D. Helicopter vibration reduction technique with harmonic active control[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(5): 566-571 (in Chinese).
|
| [4] |
UDDIN M M, SARKER P, THEODORE C R, et al. Active vibration control of a helicopter rotor blade by using a linear quadratic regulator[C]∥Proceedings of ASME 2018 International Mechanical Engineering Congress and Exposition. New York: ASME, 2018.
|
| [5] |
JOHNSON W. Rotorcraft aeromechanics[M]. Cambridge: Cambridge University Press, 2013: 717-722.
|
| [6] |
丁文锋, 万年, 赵彪, 等. 航空航天先进制造理论与技术研究现状及趋势[J]. 航空学报, 2025, 46(6): 531309.
|
|
DING W F, WAN N, ZHAO B, et al. Research status and tendency of advanced manufacturing theory and technology in aerospace[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531309 (in Chinese).
|
| [7] |
ROGET B, CHOPRA I. Individual blade control methodology for a rotor with dissimilar blades[J]. Journal of the American Helicopter Society, 2003, 48(3): 176-185.
|
| [8] |
MILLER N A, KUNZ D L. A comparison of main rotor smoothing adjustments using linear and neural network algorithms[J]. Journal of Sound and Vibration, 2008, 311(3-5): 991-1003.
|
| [9] |
MCCLOUD III J L, KRETZ M. Multicyclic jet-flap control for alleviation of helicopter blade stresses and fuselage vibration: 74N34512[R]. Moffett Field: NASA Ames Research Center, 1974.
|
| [10] |
BECHHOEFER E, POWER D. IMD HUMS rotor track and balance techniques[C]∥2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652). Piscataway: IEEE Press, 2003.
|
| [11] |
JOHNSON W. Self-tuning regulators for multicyclic control of helicopter vibration: 82N20188 [R]. Washington, D.C.: NASA, 1982.
|
| [12] |
TAITEL H J, DANAI K, GAUTHIER D. Helicopter track and balance with artificial neural nets[J]. Journal of Dynamic Systems, Measurement, and Control, 1995, 117(2): 226-231.
|
| [13] |
WROBLEWSKI D, GRABILL P, BERRY J, et al. Neural network system for helicopter rotor smoothing[C]∥2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484). Piscataway: IEEE Press, 2000.
|
| [14] |
WANG S D, DANAI K, WILSON M. Adaptive method of helicopter track and balance[J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 127(2): 275-282.
|
| [15] |
WANG S D, DANAI K, WILSON M. A probability-based approach to helicopter rotor tuning[J]. Journal of the American Helicopter Society, 2005, 50(1): 56-64.
|
| [16] |
GANGULI R. Health monitoring of a helicopter rotor in forward flight using fuzzy logic[J]. AIAA Journal, 2002, 40(12): 2373-2381.
|
| [17] |
KRISHNAMURTHI J. Quasi-static rotor morphing applications in flight mechanics and active track-and-balance[D]. New York: Rensselaer Polytechnic Institute, 2018: 21-30.
|
| [18] |
RODRIGUEZ-EGUIA I, ERRASTI I, FERNANDEZ-GAMIZ U, et al. A parametric study of trailing edge flap implementation on three different airfoils through an artificial neuronal network[J]. Symmetry, 2020, 12(5): 828.
|
| [19] |
YOU Y H, JUNG S N. Optimal active twist control scenario for performance and vibration perspective of a helicopter rotor[C]∥41st European Rotorcraft Forum (ERF). 2014.
|
| [20] |
KRISHNAMURTHI J, GANDHI F. Active pitch links and trailing-edge tabs for rotor track and balance[C]∥AHS Specialists’ Conference on Aeromechanics Design for Transformative Vertical Flight. 2018.
|
| [21] |
ARNOLD U T P, FÜRST D. Closed loop IBC results from CH-53G flight tests[J]. Aerospace Science and Technology, 2005, 9(5): 421-435.
|
| [22] |
GMBH Z L, ARNOLD U, FUERST D, et al. Flight testing of an in-flight tuning system on a CH-53G helicopter[C]∥Proceedings of the Vertical Flight Society 70th Annual Forum. 2014.
|
| [23] |
BECHHOEFER E, FANG A, VAN NESS D. Improved rotor track and balance performance using an expert system[C]∥2011 IEEE Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2011.
|
| [24] |
邓景辉, 方永红. 直升机旋翼锥体与平衡调整方法研究[J]. 直升机技术, 2004(1): 9-13.
|
|
DENG J H, FANG Y H. A research on tracking and balance tuning for helicopter rotor[J]. Helicopter Technique, 2004(1): 9-13 (in Chinese).
|
| [25] |
刘红梅, 吕琛, 欧阳平超, 等. 粒子群优化在直升机旋翼动平衡调整中的应用[J]. 北京航空航天大学学报, 2011, 37(3): 283-288.
|
|
LIU H M, LÜ C, OUYANG P C, et al. Helicopter rotor tuning based on neural network and particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 283-288 (in Chinese).
|
| [26] |
黄林然, 孙灿飞, 赵英梅, 等. 基于智能变距拉杆的旋翼平衡实时调整方法[J]. 南京航空航天大学学报, 2023, 55(2): 186-192.
|
|
HUANG L R, SUN C F, ZHAO Y M, et al. Real time adjustment method of rotor balance based on smart pitch rod[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(2): 186-192 (in Chinese).
|
| [27] |
庞哲凯. 一种直升机旋翼动平衡配重自适应控制方法[J]. 中国科技信息, 2023(4): 52-55.
|
|
PANG Z K. Adaptive control method of helicopter rotor dynamic balance counterweight[J]. China Science and Technology Information, 2023(4): 52-55 (in Chinese).
|
| [28] |
冯启发, 赵鹏举, 文建峰. 基于试重法解决直升机旋翼动平衡调整问题[J]. 现代制造技术与装备, 2023, 59(11): 169-172.
|
|
FENG Q F, ZHAO P J, WEN J F. The dynamic balance adjustment problem of helicopter rotor is solved based on the test weight method[J]. Modern Manufacturing Technology and Equipment, 2023, 59(11): 169-172 (in Chinese).
|
| [29] |
高亚东, 张曾锠, 余建航. 用机体振动诊断旋翼失衡故障方法研究[J]. 振动工程学报, 2002, 15(4): 395-398.
|
|
GAO Y D, ZHANG Z C, YU J H. Novel helicopter rotor imbalance fault diagnosis using only information from fuselage vibration[J]. Journal of Vibration Engineering, 2002, 15(4): 395-398 (in Chinese).
|
| [30] |
王传达, 彭海军, 黄国科, 等. 直升机旋翼锥体与动平衡主动调节技术[J]. 动力学与控制学报, 2023, 21(2): 12-23.
|
|
WANG C D, PENG H J, HUANG G K, et al. Active adjustment technology of helicopter rotor track and dynamic balance[J]. Journal of Dynamics and Control, 2023, 21(2): 12-23 (in Chinese).
|
| [31] |
WANG C D, HUANG G K, LI F, et al. A novel constrained optimal tuning method with application to helicopter rotor track and balance[J]. Mechanical Systems and Signal Processing, 2023, 184: 109715.
|
| [32] |
LEISHMAN J G, BEDDOES T S. A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society, 1989, 34(3): 3-17.
|
| [33] |
HE C J. Development and application of a generalized dynamic wake theory for lifting rotors[D]. Atlanta: Georgia Institute of Technology, 1989: 17-60.
|
| [34] |
ROGET B. Individual blade control for vibration reduction of a helicopter with dissimilar blades [D]. College Park: University of Maryland, 2004.
|
| [35] |
CHENG T. Structural dynamics modeling of helicopter blades for computational aeroelasticity[D]. Massachusetts: Massachusetts Institute of Technology, 2002: 43-76.
|
| [36] |
STALEY J A. Validation of rotorcraft flight simulation program through correlation with flight data for soft-in-plane hingeless rotors: USAAMRDL-TR-75-50[R]. Fort Eustis: US Army Air Mobility Research and Development Laboratory, 1976.
|
| [37] |
YEO H, JOHNSON W. Prediction of rotor structural loads with comprehensive analysis[J]. Journal of the American Helicopter Society, 2008, 53(2): 193-209.
|