收稿日期:2025-04-11
修回日期:2025-07-01
接受日期:2025-08-18
出版日期:2025-08-19
发布日期:2025-08-18
通讯作者:
贺小帆
E-mail:xfhe@buaa.edu.cn
基金资助:
Zhen JIA1, Chendi LI1, Kunyu WEI1, Hongda DONG2, Xiaofan HE1(
)
Received:2025-04-11
Revised:2025-07-01
Accepted:2025-08-18
Online:2025-08-19
Published:2025-08-18
Contact:
Xiaofan HE
E-mail:xfhe@buaa.edu.cn
Supported by:摘要:
风扇盘是航空发动机的重要断裂关键结构,为保障其服役安全性和可靠性,需要编制反映实际使用情况的载荷谱,用于疲劳寿命评定。基于某发动机2种任务类型的实际使用数据,进行了风扇盘单参数载荷统计分析,采用任务段分析法编制了中值转速谱;采用SWT(Smith-Watson-Topper)公式和线性累积损伤理论计算载荷谱损伤,采用DTW(Dynamic Time Warping)方法进行载荷谱相似性分析,结合TC17钛合金模拟试件成组试验,建立了基于载荷谱相似性的损伤分析方法;进行了机群风扇盘转速谱损伤计算,获得载荷谱损伤样本,拟合优度检验表明风扇盘转速谱损伤服从对数正态分布,中值转速谱损伤接近机群转速谱中值损伤,验证了编谱方法的合理性。为准确评估风扇盘安全寿命提供了重要支撑。
中图分类号:
贾震, 李晨迪, 卫昆钰, 董宏达, 贺小帆. 发动机风扇盘转速谱编制方法[J]. 航空学报, 2026, 47(2): 232110.
Zhen JIA, Chendi LI, Kunyu WEI, Hongda DONG, Xiaofan HE. Speed spectrum development method for engine fan disk[J]. Acta Aeronautica et Astronautica Sinica, 2026, 47(2): 232110.
表7
各载荷谱成组疲劳试验结果
| 载荷谱 | 有效 试件数 | 各试件寿命 t/起落 | 中值寿命 t50/起落 | 对数寿 命标准 差S |
|---|---|---|---|---|
| 中值谱 | 8 | 3 174,3 939,4 882, 3 946,3 576,4 114, 4 286,3 245 | 3 860 | 0.062 6 |
| 谱1 | 7 | 2 206,1 800,1 915, 2 052,3 027,1 925, 1 946 | 2 095 | 0.075 7 |
| 谱2 | 7 | 3 431,4 387,3 728, 4 593,5 006,3 781, 3 958 | 4 095 | 0.057 7 |
| 谱3 | 6 | 3 309,2 475,2 512, 2 481,2 847,3 263 | 2 793 | 0.059 3 |
| 谱4 | 6 | 3 344,2 863,2 953, 2 603,1 961,2 521 | 2 672 | 0.078 9 |
| 谱5 | 5 | 2 531,2 440,2 268, 2 203,2 173 | 2 319 | 0.028 8 |
表10
任务1各剖面DTW值和相对损伤率
| 序号 | 单次起落DTW值 | 相对损伤率d | 序号 | 单次起落DTW值 | 相对损伤率d | 序号 | 单次起落DTW值 | 相对损伤率d |
|---|---|---|---|---|---|---|---|---|
| 1 | 115.513 0 | 1.731 1 | 20 | 121.298 7 | 1.049 5 | 39 | 119.525 9 | 0.807 4 |
| 2 | 129.874 1 | 3.132 9 | 21 | 126.203 3 | 2.375 8 | 40 | 124.792 4 | 1.728 6 |
| 3 | 116.832 6 | 1.646 2 | 22 | 114.903 0 | 1.322 9 | 41 | 119.376 5 | 0.730 8 |
| 4 | 108.926 9 | 1.078 8 | 23 | 132.190 0 | 1.283 5 | 42 | 123.697 8 | 1.131 3 |
| 5 | 117.589 2 | 1.143 7 | 24 | 119.780 0 | 0.904 6 | 43 | 109.323 5 | 0.522 3 |
| 6 | 139.565 4 | 0.793 5 | 25 | 112.644 3 | 0.857 2 | 44 | 120.418 4 | 1.015 9 |
| 7 | 135.366 6 | 3.210 9 | 26 | 109.735 0 | 0.903 8 | 45 | 122.708 6 | 0.542 9 |
| 8 | 121.245 9 | 0.718 3 | 27 | 118.341 4 | 1.688 8 | 46 | 117.830 4 | 0.658 0 |
| 9 | 128.187 4 | 2.213 4 | 28 | 130.360 3 | 2.046 0 | 47 | 113.843 3 | 0.642 8 |
| 10 | 125.481 1 | 1.672 1 | 29 | 118.635 5 | 2.035 2 | 48 | 109.397 2 | 0.686 5 |
| 11 | 126.862 1 | 1.360 2 | 30 | 127.753 2 | 2.433 1 | 49 | 119.812 5 | 1.531 3 |
| 12 | 125.193 0 | 2.229 2 | 31 | 112.411 8 | 1.509 5 | 50 | 123.778 4 | 1.833 2 |
| 13 | 116.843 6 | 1.789 1 | 32 | 122.431 1 | 1.071 7 | 51 | 106.010 7 | 0.915 3 |
| 14 | 124.267 0 | 1.165 9 | 33 | 113.068 2 | 0.762 0 | 52 | 105.949 8 | 0.697 2 |
| 15 | 113.260 3 | 0.845 3 | 34 | 124.377 8 | 1.250 7 | 53 | 119.024 0 | 0.911 8 |
| 16 | 119.385 2 | 1.056 8 | 35 | 122.187 3 | 0.554 2 | 54 | 113.714 6 | 0.794 1 |
| 17 | 124.651 1 | 1.158 8 | 36 | 115.599 6 | 0.909 7 | 55 | 107.939 0 | 0.826 4 |
| 18 | 117.439 6 | 1.221 5 | 37 | 135.782 9 | 2.500 0 | |||
| 19 | 113.834 7 | 1.338 2 | 38 | 126.080 4 | 1.532 4 |
表11
任务2各剖面DTW值和相对损伤率
| 序号 | 单次起落DTW值 | 相对损伤率d | 序号 | 单次起落DTW值 | 相对损伤率d | 序号 | 单次起落DTW值 | 相对损伤率d |
|---|---|---|---|---|---|---|---|---|
| 1 | 125.362 0 | 1.757 2 | 22 | 118.272 3 | 1.947 6 | 43 | 122.077 6 | 0.679 7 |
| 2 | 117.965 6 | 2.016 0 | 23 | 126.989 3 | 0.833 9 | 44 | 120.048 4 | 1.497 4 |
| 3 | 106.348 5 | 0.933 3 | 24 | 116.027 5 | 1.764 6 | 45 | 116.309 1 | 0.569 1 |
| 4 | 105.073 7 | 2.179 4 | 25 | 121.295 6 | 1.899 3 | 46 | 121.614 4 | 0.655 3 |
| 5 | 110.415 7 | 1.282 4 | 26 | 115.799 3 | 1.394 9 | 47 | 114.169 6 | 0.578 4 |
| 6 | 132.121 6 | 2.017 3 | 27 | 126.342 8 | 1.220 6 | 48 | 116.886 3 | 1.574 2 |
| 7 | 144.270 4 | 0.631 1 | 28 | 120.953 1 | 1.002 5 | 49 | 117.299 7 | 0.563 2 |
| 8 | 119.624 1 | 1.559 3 | 29 | 107.721 5 | 1.201 8 | 50 | 115.539 9 | 0.937 5 |
| 9 | 129.396 2 | 0.865 3 | 30 | 112.109 7 | 1.282 7 | 51 | 118.852 0 | 0.623 2 |
| 10 | 109.444 2 | 1.302 0 | 31 | 120.653 8 | 0.592 1 | 52 | 127.062 5 | 0.568 1 |
| 11 | 129.369 6 | 1.370 7 | 32 | 114.883 8 | 0.637 6 | 53 | 129.286 7 | 1.664 5 |
| 12 | 114.768 5 | 1.148 7 | 33 | 115.498 0 | 1.343 7 | 54 | 131.830 8 | 2.403 4 |
| 13 | 112.509 3 | 1.396 9 | 34 | 119.311 8 | 1.420 0 | 55 | 114.039 3 | 0.498 2 |
| 14 | 119.566 1 | 0.885 0 | 35 | 120.280 7 | 1.249 0 | 56 | 116.796 2 | 0.775 4 |
| 15 | 107.527 4 | 1.432 0 | 36 | 114.063 0 | 0.905 4 | 57 | 111.850 1 | 0.686 8 |
| 16 | 124.354 0 | 0.537 5 | 37 | 118.128 9 | 1.803 0 | 58 | 116.912 0 | 0.439 8 |
| 17 | 124.276 4 | 1.757 2 | 38 | 125.307 5 | 1.565 5 | 59 | 114.445 3 | 0.730 7 |
| 18 | 120.801 9 | 2.016 0 | 39 | 120.985 2 | 0.415 7 | 60 | 106.023 6 | 0.541 6 |
| 19 | 110.818 2 | 0.933 3 | 40 | 117.432 5 | 1.606 6 | 61 | 106.338 9 | 0.658 5 |
| 20 | 118.609 2 | 2.179 4 | 41 | 105.013 9 | 0.841 8 | 62 | 112.377 6 | 0.699 9 |
| 21 | 125.316 6 | 1.282 4 | 42 | 118.452 2 | 0.913 9 |
| [1] | 宋兆泓. 航空发动机典型故障分析[M]. 北京: 北京航空航天大学出版社, 1993. |
| SONG Z H. Typical fault analysis of aero-engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1993 (in Chinese). | |
| [2] | 中国人民解放军总装备部. 航空涡轮喷气和涡轮风扇发动机通用规范: [S]. 北京: 总装备部军标出版发行部, 2010. |
| General Armaments Department of the People’s Liberation Army. Engine, aircraft, turbojet and turbofan, general specification for: [S]. Beijing: General Armament Department Military Standards Publication and Distribution Department, 2010 (in Chinese). | |
| [3] | Unite States Air Force. Engine structural integrity program (ENSIP): MIL-S [S]. Washington: U. S. Air Force, 1984. |
| [4] | 马双员, 张永峰. 航空发动机载荷谱综述[J]. 现代机械, 2011(5): 15-17, 35. |
| MA S Y, ZHANG Y F. Overview of aeroengine loading spectrum[J]. Modern Machinery, 2011(5): 15-17, 35 (in Chinese). | |
| [5] | 宋迎东, 孙志刚. 操作相关的发动机载荷谱模型与仿真研究[J]. 航空动力学报, 2003, 18(6): 727-731. |
| SONG Y D, SUN Z G. Model and simulation of aeroengine load spectrum related to operation[J]. Journal of Aerospace Power, 2003, 18(6): 727-731 (in Chinese). | |
| [6] | 宋迎东, 高德平. 发动机机动飞行类综合载荷谱研究[J]. 航空动力学报, 2002, 17(2): 212-216. |
| SONG Y D, GAO D P. Aeroengine composite maneuver loading spectrum derivation[J]. Journal of Aerospace Power, 2002, 17(2): 212-216 (in Chinese). | |
| [7] | 宋迎东, 张勇, 温卫东, 等. 多参数载荷组合的概率分布研究[J]. 航空动力学报, 2001, 16(4): 331-334, 339. |
| SONG Y D, ZHANG Y, WEN W D, et al. A study of probability distribution of multiparameter load spectrum combination[J]. Journal of Aerospace Power, 2001, 16(4): 331-334, 339 (in Chinese). | |
| [8] | LU Q, SUN Z G, XU C, et al. A new compilation method of general standard test load spectrum for aircraft engine[J]. International Journal of Turbo & Jet-Engines, 2022, 39(1): 13-23. |
| [9] | SUN Z G, XING G P, LU Q, et al. Simulation of use-related multi-parameter load spectrum based on principal component analysis[J]. International Journal of Turbo & Jet-Engines, 2022, 39(2): 149-165. |
| [10] | 杜宇飞, 孙志刚, 陆琪, 等. 基于任务段的航空发动机载荷谱聚类方法[J]. 航空动力学报, 2019, 34(5): 987-996. |
| DU Y F, SUN Z G, LU Q, et al. Aeroengine load spectrum clustering method based on mission segment[J]. Journal of Aerospace Power, 2019, 34(5): 987-996 (in Chinese). | |
| [11] | 杜宇飞. 航空发动机载荷谱聚类分析方法与编制研究[D]. 南京: 南京航空航天大学, 2018. |
| DU Y F. Research on aeroengine load spectrum clustering analysis method and simulation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
| [12] | 林鑫. 基于任务段的航空发动机载荷谱编制方法研究[D]. 南京: 南京航空航天大学, 2022. |
| LIN X. Research on compilation method of aero-engine load spectrum base on mission segment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022 (in Chinese). | |
| [13] | NIU X M, LU Q, SUN Z G, et al. A novel compilation method of comprehensive mission spectrum of aero-engine maneuvering load based on use-related mission segment[J]. Chinese Journal of Aeronautics, 2023, 36(3): 161-170. |
| [14] | BREITKOPF G E. Basic approach in the development of TURBISTAN, a loading standard for fighter aircraft engine disks[M]∥Development of Fatigue Loading Spectra. West Conshohocken: ASTM International, 1989:65-78. |
| [15] | 张勇, 蔚夺魁. 航空涡喷涡扇发动机多参数载荷谱编制方法研究[J]. 航空发动机, 2004, 30(1): 6-9, 13. |
| ZHANG Y, YU D K. Constitution of multi-parameter loading spectrum of turbojets and turbofans[J]. Aeroengine, 2004, 30(1): 6-9, 13 (in Chinese). | |
| [16] | 彭靖波, 谢寿生, 冷敏, 等. 基于飞参数据的航空发动机三循环谱编制[J]. 燃气涡轮试验与研究, 2007, 20(3): 48-50, 33. |
| PENG J B, XIE S S, LENG M, et al. Compilation of aeroengine three cycle spectrum[J]. Gas Turbine Experiment and Research, 2007, 20(3): 48-50, 33 (in Chinese). | |
| [17] | 朱俊贤. 运输类飞机阵风严重谱编制方法[D]. 北京: 北京航空航天大学, 2020. |
| ZHU J X. Methodology of Severe Gust Load Spectra Development for Transport Aircrafts[D]. Beijing: Beihang University, 2020 (in Chinese). | |
| [18] | 袁辉, 王夷, 郑震山, 等. 航空发动机疲劳载荷分散性及其对应的疲劳分散系数研究[J]. 机械科学与技术, 2016, 35(6): 980-984. |
| YUAN H, WANG Y, ZHENG Z S, et al. Study on fatigue load dispersion and relevant fatigue dispersion coefficients of aircraft engines[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(6): 980-984 (in Chinese). | |
| [19] | 杨俊杰, 郑小梅, 杨兴宇. 影响航空发动机结构寿命的载荷分散系数[J]. 航空学报, 2021, 42(5): 524339. |
| YANG J J, ZHENG X M, YANG X Y. Load scatter factors affecting aero engine structure life[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524339 (in Chinese). | |
| [20] | 程礼, 冯伟, 陈卫. 航空发动机飞行任务剖面统计规律研究[J]. 航空动力学报, 2003, 18(6): 749-752. |
| CHENG L, FENG W, CHEN W. Study of the statistical rules for flight mission profiles of aero-engine[J]. Journal of Aerospace Power, 2003, 18(6): 749-752 (in Chinese). | |
| [21] | 柏松. 航空发动机涡轮轴高低周复合疲劳寿命预测方法[D]. 成都: 电子科技大学, 2023. |
| BAI S. Life prediction method for the combined high and low cycle fatigue of an aero-engine turbine shaft[D]. Chengdu: University of Electronic Science and Technology of China, 2023 (in Chinese). | |
| [22] | HUANG H Z, GONG J, ZUO M J, et al. Fatigue life estimation of an aircaft engine under different load spectrums[J]. Int J Turbo Jet-Engines, 2012, 29(4): 259-267. |
| [23] | 马艳红, 李振华, 张伟锋, 等. 考虑叶冠工作面接触特性分散性影响的涡轮叶片可靠性评估方法[J]. 航空动力学报, 2025, 40(2): 20230242. |
| MA Y H, LI Z H, ZHANG W F, et al. Reliability evaluation of turbine blades considering contact variability on working surface of shrouds[J]. Journal of Aerospace Power, 2025, 40(2): 20230242 (in Chinese). | |
| [24] | MASSEY F J. The kolmogorov-smirnov test for goodness of fit[J]. Journal of the American Statistical Association, 1951, 46(253): 68-78. |
| [25] | MENG X L, RUBIN D B. Maximum likelihood estimation via the ECM algorithm: A general framework[J]. Biometrika, 1993, 80(2): 267-278. |
| [26] | STUTE W, MANTEIGA W G, QUINDIMIL M P. Bootstrap based goodness-of-fit-tests[J]. Metrika, 1993, 40(1): 243-256. |
| [27] | CRAMÉR H. On the composition of elementary errors[J]. Scandinavian Actuarial Journal, 1928, 1928(1): 13-74. |
| [28] | ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837. |
| [29] | 蒋祖国, 田丁栓, 周占廷. 飞机结构载荷/环境谱[M]. 北京: 电子工业出版社, 2012. |
| JIANG Z G, TIAN D S, ZHOU Z T. Aircraft structural load/environment spectrum[M]. Beijing: Publishing House of Electronics Industry, 2012 (in Chinese). | |
| [30] | SMITH K N, WATSON P, TOPPER T H.A Stress- strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4) :767-778. |
| [31] | 于慧中,李兴无,吴学仁. 先进航空发动机设计用金属材料数据手册[M]. 北京: 航空工业出版社, 2022. |
| YU Z H, LI X W, WU X R. Metal material data handbook for advanced aero engine design[M]. Beijing: Aviation Industry Press, 2022 (in Chinese). | |
| [32] | SCHÜTZ W. The prediction of fatigue life in the crack initiation and propagation stages: A state of the art survey[J]. Engineering Fracture Mechanics, 1979, 11(2): 405-421. |
| [33] | 刘文珽, 王智, 隋福成,等. 单机寿命监控技术指南[M]. 北京: 国防工业出版社, 2010. |
| LIU W T, WANG Z, SUI F C, et al. Technical guide for individual aircraft life monitoring[M]. Beijing: National Defense Industry Press, 2010 (in Chinese). | |
| [34] | ITAKURA F. Minimum prediction residual principle applied to speech recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1975, 23(1): 67-72. |
| [35] | 颜灿林, 贺小帆, 李玉海. 一种起落架载荷谱相似性判别方法[J]. 北京航空航天大学学报, 2019, 45(4): 752-759. |
| YAN C L, HE X F, LI Y H. An approach for similarity discrimination on landing gear load spectrum[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 752-759 (in Chinese). | |
| [36] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 疲劳试验 数据统计方案与分析方法: [S]. 北京: 中国标准出版社, 2010. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Repubic of China, Standardization Administration of the People’s Republic of China. Metallic materials—Fatigue testing—Statistical planning and analysis of data: [S]. Beijing: Standards Press of China, 2010 (in Chinese). |
| [1] | 崔明, 冯建民, 米征, 郭俊毫. 大型无人机主结构耐久性试验加载技术[J]. 航空学报, 2022, 43(6): 525887-525887. |
| [2] | 奚蔚, 李强, 沈培良, 何瑞, 杨刚, 刘世杰. 一种多部位损伤全寿命分析的工程方法[J]. 航空学报, 2021, 42(5): 524328-524328. |
| [3] | 刘克格, 闫楚良. 飞机起落架载荷谱实测与编制方法[J]. 航空学报, 2011, 32(5): 841-848. |
| [4] | 朱家元;张恒喜;张喜斌. 基于智能复合结构的可靠性分布模式自动识别[J]. 航空学报, 2003, 24(3): 207-211. |
| [5] | 张福泽. 飞机载荷谱编制的新方法研究[J]. 航空学报, 1998, 19(5): 518-524. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

