航空学报 > 2025, Vol. 46 Issue (23): 131775-131775   doi: 10.7527/S1000-6893.2025

固体力学与飞行器总体设计

CMC-金属柔性支承结构高温压缩回弹性能

腾雪峰1,2, 袁恩赐1, 胡晓安1,2, 黎超超3(), 曾琦3, 万卜铭3, 石小磊4, 汤卓3   

  1. 1.南昌航空大学 动力与能源学院,南昌 330063
    2.通航涡轮动力技术教育部工程研究中心,南昌 330063 3.中国航发湖南动力机械研究所,株洲 412002 4.中国航发北京航空材料研究院,北京 100095
  • 收稿日期:2025-01-07 修回日期:2025-02-10 接受日期:2025-03-28 出版日期:2025-05-19 发布日期:2025-05-19
  • 通讯作者: 黎超超 E-mail:873430230@qq.com
  • 基金资助:
    国家自然科学基金(52305153);江西省自然科学基金(20232BAB214048);中国航发集团自主创新专项资金项目(ZZCX-2021-009);江西省研究生创新专项资金项目(YC2024-S625)

High-temperature compression springback properties of CMC-metal flexible support structures

Xuefeng TENG1,2, Enci YUAN1, Xiaoan HU1,2, Chaochao LI3(), Qi ZENG3, Buming WAN3, Xiaolei SHI4, Zhuo TANG3   

  1. 1.School of Power and Energy,Nanchang Hangkong University,Nanchang 330063,China
    2.Engineering Research Center of Aero-engine Technology for General Aviation,Ministry of Education,Nanchang 330063,China
    3.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China
    4.AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China
  • Received:2025-01-07 Revised:2025-02-10 Accepted:2025-03-28 Online:2025-05-19 Published:2025-05-19
  • Contact: Chaochao LI E-mail:873430230@qq.com
  • Supported by:
    National Natural Science Foundation of China(52305153);Natural Science Foundation of Jiangxi Province(20232BAB214048);Independent Innovation Special Fund Project of Aero Engine Corporation of China(ZZCX-2021-009);Innovation Special Fund Project of Jiangxi Province(YC2024-S625)

摘要:

陶瓷基复合材料(CMC)以其耐高温、低密度、高比刚度、高比强度的特点,已成为航空航天领域重要的结构材料,并逐步应用于航空航天热结构部件,而CMC与金属零部件的连接结构设计与性能考核是CMC实现广泛应用的关键。为研究CMC-金属柔性支承结构的高温回弹性能,根据支承结构的典型特征设计了CMC-金属柔性支承结构试验模拟件,对其在高温条件下开展压缩疲劳试验,并采用数字图像相关(DIC)方法对支承结构的疲劳变形行为和金属支承弹片的回弹性能进行原位在线观测和量化分析。结果表明:内支承与外支承金属弹片的回弹率受结构循环硬化和非弹性变形累积的影响,循环硬化提高弹性变形比例进而提高回弹率,而非弹性变形的变速累积使弹片回弹率不断下降。疲劳载荷水平越高,支承结构变形幅度越大,非弹性变形在弹片高变形区域的累积越显著,支承结构从而表现出越低的回弹率。高温疲劳结束后,外支承结构弹片回弹率在35%以下,内支承结构弹片回弹率在40%~60%。

关键词: 柔性支承, 结构模拟件, 结构疲劳, 变形机制, 回弹性能

Abstract:

Ceramic Matrix Composite (CMC), knowns for its exceptional resistance to high temperatures, low density, high specific stiffness, and high specific strength, has emerged as a crucial structural material in the aerospace industry, and is increasingly being utilized in aerospace thermal structural components. Therefore, the design of connecting structures and the performance assessment of CMC and metal parts are pivotal in enabling the widespread application of CMC. To study the high-temperature springback properties of the CMC-metal flexible support structure, a test simulator of the CMC-metal flexible support structure was designed according to the typical characteristics of the support structure, and compression fatigue tests were carried out under high-temperature conditions. The fatigue deformation behavior of the support structure and the springback properties of the metal spring plate specimen were observed and quantitatively analyzed in-situ online using the DIC method. The results show that the springback ratios of the inner and outer support metal spring plate specimens are affected by the cyclic hardening and the accumulation of inelastic deformation of the structure. Cyclic hardening increases the proportion of elastic deformation and thus improving the springback ratio, while the variable-speed accumulation of inelastic deformation of the spring plate specimens leads to decreae in springback ratio. The higher the fatigue load level, the larger the deformation amplitude of the support structure, the more significant the accumulation of inelastic deformation in the high deformation region of the spring plate specimens, resulting in lower springback ratio. At the end of fatigue, the springback ratios of the outer support structure spring plate specimens are below 35%, and the inner support structure spring plate specimens are in the range of 40%-60%.

Key words: flexible support, structure simulation specimen, structure fatigue, deformation mechanisms, springback properties

中图分类号: