收稿日期:
2024-01-24
修回日期:
2024-02-28
接受日期:
2024-04-17
出版日期:
2024-04-26
发布日期:
2024-04-25
通讯作者:
王立冬
E-mail:wangld@lut.edu.cn
基金资助:
Yueqing ZHAO1, Dezhi LIN1, Hui CHEN1, Jiali TANG1, Lidong WANG2()
Received:
2024-01-24
Revised:
2024-02-28
Accepted:
2024-04-17
Online:
2024-04-26
Published:
2024-04-25
Contact:
Lidong WANG
E-mail:wangld@lut.edu.cn
Supported by:
摘要:
随着民用飞机复合材料用量日益增加,以及对材料国产化的迫切需求,提高复合材料结构件制造效率、成型质量已成为当今亟待解决的问题。为了避免成型过程中出现褶皱、屈曲、厚度不均等成型缺陷,有必要对预浸料的成型性能进行全面表征,以评估材料的可制造性,并为选材和材料性能改进提供参考,也为有限元仿真模型的建立提供数据。相比于织物预浸料,单向带预浸料在民用飞机复合材料结构件的应用更为广泛,特别是用于对强度有较高要求的主承力结构件的制造。系统综述了国内外关于单向预浸料在压实、面内剪切、层间滑移、弯曲性能等成型性能测试方面取得的研究成果,并对预浸料成型性能测试的发展方向进行了探讨。
中图分类号:
赵月青, 林德志, 陈汇, 汤家力, 王立冬. 单向预浸料成型性能表征方法研究进展[J]. 航空学报, 2024, 45(22): 30224.
Yueqing ZHAO, Dezhi LIN, Hui CHEN, Jiali TANG, Lidong WANG. Research progress on characterization methods for forming performance of unidirectional prepregs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 30224.
表 1
单向预浸料压实测试试验参数汇总
文献 | 材料 | 试样尺寸/mm2 | 加载方式 | 铺层 | 测试温度/℃ | 观察设备 | 测试设备 |
---|---|---|---|---|---|---|---|
Nixon-Pearson等[ | IM7/8552,IMA/M21 | 25×15,50×30 | 逐渐加载/阶梯式加载 | [90/0]8,[904/04/904/04],[902/02/902/02]2 | 30~90 | Micro-CT | DMA/力学试验机 |
Belnoue等[ | IM7/8552 | 50×30 | 恒压 | [90/0]8,[904/04/904/04] | 固化制度 | Micro-CT | 力学试验机 |
Valverde[ | CF/PPS, CF/PEEK | 25×15,15×15 | 阶梯式加载 | [90/0]3 s,[(90/0)2/90/0/90(90/0)2] | 260~320(PPS),323~383(PEEK) | 显微镜 | 力学试验机 |
满珈诚等[ | CF/Epoxy | 150×(100,150,200) | 恒定位移 | [0]5,[0]10,[0]15 | 25, 80, 120 | 金相显微镜 | 力学试验机 |
李哲夫等[ | M40J/MT0928 | 150×100 | 恒定位移 | [0]10,[0]15,[0]20,[±45]10 | 75 | 力学试验机 | |
Sorba等[ | IMA/M21 | 150×150 | 恒压 | [0]6,[0/90]6,[30/-30]6 | 260 | Micro-CT | 力学试验机 |
表 2
单向预浸料面内剪切测试方法汇总
文献 | 材料 | 测试装置 | 试样尺寸/mm3 | 加载装置 | 夹持装置 运动类型 | 夹持方式 |
---|---|---|---|---|---|---|
Groves和Stocks[ | Carbon/PEEK | 10×10×?, 15×15×?, 25×25×? | 流变仪 | 旋转 | 平板-平板 | |
Wheeler和Jones[ | Carbon/Golden Syrup | 10×10×0.5 | 线性振荡器 | 旋转 | 平板-平板 | |
Jones和Roberts[ | Nylon/Golden Syrup | 39×39×1 | 线性振荡器 | 旋转 | 平板-平板 | |
Haanappel和Akkerman[ | AS4 Carbon/PEEK | 60×13×11 | 流变仪 | 旋转 | 组合夹具 | |
Goshawk和Jones[ | Nylon/Golden Syrup | 39×39×1.7 | 拉出装置 | 平动 | 平板-平板-平板 | |
Stanley和Mallon[ | Nylon/Golden Syrup | (5~20)×10×11 | 拉出装置 | 平动 | 平板-平板-平板 | |
Dykes等[ | Glass/PP | 120×40×4 | 力学试验机 | 弯曲 | V型弯曲 | |
McGuinness和Óbrádaigh[ | Carbon/PEEK | 200×200×? | 力学试验机 | 平动 | 相框 |
表 3
单向预浸料偏轴拉伸测试汇总
文献 | 材料 | 铺层 | 温度/℃ | 速率/ (mm·min-1) | 试样尺寸/mm2 | 应变测量设备 |
---|---|---|---|---|---|---|
Potter[ | Glass/Carbon/Hexcel 913 | [±45] | RT | 10~180 | 100×324, 6×364,3×394 | CCD 相机 /MAGE PRO |
Larberghe Åkermo[ | 977-2/HTA,M21/T700, 8552/AS4 | [45/-45]s | 45~90 | 5~100 | 250×50 | DIC/Aramis |
Larberg等[ | T700/M21, HTS/977-2 | [45/-45]s,[45/-45/90]s,[45/90/-45]s | 70~85 | 40 | 250×50 | DIC/Aramis |
陈萍等[ | CYCOM X850 | [45/-45]s,[45/-45/90]s,[45/90/-45]s | 40~100 | 5~80 | 200×60 | |
Wang等[ | IM7/8552, IMA/M21 | [ | 25~75 | 0.001~0.100 s-1(应变速率) | 207×23 | DIC |
Zhao等[ | CYCOM X850 | [45/-45]s | RT~100 | 5~100 | 200×60 | CCD 相机/ImageJ |
Liu等[ | T-700/MTC510 | [45/-45] | 23,50,80 | 2, 10, 20 | 260×40 | DIC |
表 4
单向预浸料摩擦测试汇总
文献 | 材料 | 加载方式 | 加热方式 | 速率/ (mm·min-1) | 温度/℃ | 压力/MPa | 接触面尺寸/mm2 |
---|---|---|---|---|---|---|---|
陈洁等[ | CYCOM X850(UD) | 弹簧 | 硅橡胶加热片 | 1 | 30~80 | 0.100~0.600 | 100×35 |
Grewal和Hojjati[ | CYCOM 5320 (UD&Fabic) | 弹簧 | 加热片 | 12~120 | 50~90 | 0.050~0.100 | 140×76 |
Larberg和Åkermo[ | 977-2/M21/ 8552(UD) | 气缸 | 环境箱加热 | 0.05~1.00 | 45~85 | 0.053~0.100 | 100×90 |
Erland等[ | AS4/8552(UD) | 气缸 | 环境箱加热 | 0.01~0.15 | 40~100 | 0.025~0.100 | 50×50 |
Wang等[ | CYCOM X850(UD) | 弹簧 | 环境箱加热 | 0.2~5.0 | 60~90 | 0.002~0.004 | 105×80 |
Zhao等[ | CYCOM X850(UD) | 气缸 | 加热片 | 0.05~5.00 | 40~100 | 0.050~0.200 | 40×40 |
Li等[ | IMA/M21(UD) | 气缸 | 加热片 | 0.1~1.0 | 25~1 000 | 0.01~0.10 | 100×100 |
Pierik等[ | Cetex TC1200(UD),TC1225(UD) | 气动装置 | 1~200 | 345~400 | 0.005~0.135 | 50×50 |
表 5
预浸料弯曲测试汇总
文献 | 材料 | 测试装置 | 试样尺寸/mm3 | 速率 | 温度/℃ |
---|---|---|---|---|---|
Sachs和Akkerman[ | Carbon/ PA6 (UD) | KES-FB2+流变仪 | (25~35)×25×? | 0.6~ 60.0 (°)·s-1 | 240~280 |
Liang等[ | Carbon/PEEK, Carbon/ PPS (Fabric) | 悬臂梁 | 300×50×0.319,300×50×0.310 | 准静态 | 25~400 |
Dangora等[ | Polyethylene/ TPU (UD) | 悬臂梁 | 250×25×0.592 | 准静态 | 80~120 |
Margossian等[ | Carbon/ PA6 (UD) | DMA(三点弯) | 20(50)×15×1(2) | 准静态 | 200~160 |
Wang等[ | Carbon/Epoxy(M2, UD) | 屈曲 | 1 000×50×0.9 | 4.4~300 mm/min | RT~150 |
1 | 王凯, 陈敏英, 苏月. 复合材料梁结构件的成型方法研究概况[J]. 纤维复合材料, 2019, 36(4): 63-67. |
WANG K, CHEN M Y, SU Y. A survey of forming methods for composite beam structures[J]. Fiber Composites, 2019, 36(4): 63-67 (in Chinese). | |
2 | 杨博, 王菲, 陈永清. 大尺寸复合材料翼梁的制造技术发展[J]. 航空制造技术, 2013 (22): 74-77. |
YANG B, WANG F, CHEN Y Q. Development of manufacturing technology in large composites wing spar[J]. Aeronautical Manufacturing Technology, 2013(22): 74-77 (in Chinese). | |
3 | 李哲夫. 航空复合材料热模压预成型缺陷形成机理与仿真预测研究[D]. 上海: 东华大学, 2023. |
LI Z F. Study on the formation mechanism and simulation prediction of defects in the process of hot mold-press forming for aerospace composites[D].Shanghai: Donghua University, 2023 (in Chinese). | |
4 | YU F, CHEN S, LAWRENCE G D, et al. A global-to-local sub modelling approach to investigate the effect of lubrication during double diaphragm forming of multi-ply biaxial non-crimp fabric preforms[J]. Composites Part B: Engineering, 2023, 254: 110590. |
5 | 宋晨曦, 林海涛, 赖恩平, 等. 碳纤维增强热塑性复合材料成型工艺的研究进展[J]. 纺织科学与工程学报, 2023, 40(4): 86-93. |
SONG C X, LING H T, LAI E P, et al. Research progress of the forming process of carbon fiber reinforced thermoplastic composites[J]. Journal of Textile Science and Engineering, 2023, 40(4): 86-93 (in Chinese). | |
6 | 边旭霞, 顾轶卓, 孙晶, 等. 热隔膜工艺温度与成型速率对C形复合材料成型质量的影响[J]. 玻璃钢/复合材料, 2013(5): 45-50. |
BIAN X X, GU Y Z, SUN J, et al. Effects of temperature and molding rate in hot diaphragm forming process on the forming quality of c-shaped composite[J]. Fiber Reinforced Plastics/Composites, 2013(5): 45-50 (in Chinese). | |
7 | 李璐璐, 任亚辉, 孙松强, 等. 复合材料C型梁热隔膜成型影响因素分析[J]. 航空制造技术, 2020, 63(8): 93-100. |
LI L L, REN Y H, SUN S Q, et al. Analysis of influencing factors on hot diaphragm forming for composite C spar[J]. Aeronautical Manufacturing Technology, 2020, 63(8): 93-100 (in Chinese). | |
8 | YU X B, YE L, MAI Y W, et al. Finite element simulations of the double diaphragm forming process[J]. Revue Européenne Des Éléments, 2005, 14(6-7): 633-651. |
9 | HALLANDER P, SJÖLANDER J, ÅKERMO M. Forming induced wrinkling of composite laminates with mixed ply material properties: An experimental study[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 234-245. |
10 | KREBS J, FRIEDRICH K, BHATTACHARYYA D. A direct comparison of matched-die versus diaphragm forming[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(1): 183-188. |
11 | CHEN S, MCGREGOR O P L, ENDRUWEIT A, et al. Double diaphragm forming simulation for complex composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 346-358. |
12 | DAELEMANS L, TOMME B, CAGLAR B, et al. Kinematic and mechanical response of dry woven fabrics in through-thickness compression: Virtual fiber modeling with mesh overlay technique and experimental validation[J]. Composites Science and Technology, 2021, 207: 108706. |
13 | XIE J B, GUO Z Z, SHAO M J, et al. Mechanics of textiles used as composite preforms: A review[J]. Composite Structures, 2023, 304: 116401. |
14 | SHEN H, YAO L T, LEGRAND X, et al. Characterization of wrinkle morphologies by surface waviness evaluation method during deep forming of multilayer composite preforms[J]. Composite Structures, 2023, 306: 116586. |
15 | TURK M A, VERMES B, THOMPSON A J, et al. Mitigating forming defects by local modification of dry preforms[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105643. |
16 | GUTOWSKI T G, DILLON G, CHEY S, et al. The kinematic observations for the forming of advanced thermoset composites[C]∥Proceedings of the 1994 International Mechanical Engineering Congress and Exposition. Chicago: American Society of Mechanical Engineers, 1994: 75-80. . |
17 | SMILEY A J, PIPES R B. Analysis of the diaphragm forming of continuous fiber reinforced thermoplastics[J]. Journal of Thermoplastic Composite Materials, 1988, 1(4): 298-321. |
18 | 匡载平, 戴棣, 王雪明 . 热隔膜成型技术[C]∥复合材料: 创新与可持续发展,第十六届全国复合材料学术会议论文集.北京: 中国科学技术出版社, 2010: 613-615. |
KUANG Z P, DAI D, WANG X M. Technology of hot-diaphragm forming[C]∥Composite: Innovation and sustainable development, Proceedings of the sixteenth national conference on composite materials. Beijing: China Science and Technology Press, 2010: 613-615 (in Chinese). | |
19 | LARBERG Y, ÅKERMO M. In-plane deformation of multi-layered unidirectional thermoset prepreg—Modelling and experimental verification[J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 203-212. |
20 | ÓBRÁDAIGH C M, MCGUINNESS G B, PIPES R B. Numerical analysis of stresses and deformations in composite materials sheet forming: Central indentation of a circular sheet[J]. Composites Manufacturing, 1993, 4(2): 67-83. |
21 | MARGOSSIAN A, BEL S, HINTERHOELZL R. Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system[J]. Composites Part A: Applied Science and Manufacturing, 2015, 77: 154-163. |
22 | NIXON-PEARSON O J, BELNOUE J P H, IVANOV D S, et al. The compaction behaviour of un-cured prepregs[C]∥The 20th International Conference on Composite Materials. Copenhagen: Aalborg University, 2015: 19-24. |
23 | BELNOUE J P H, NIXON-PEARSON O J, IVANOV D, et al. A novel hyper-viscoelastic model for consolidation of toughened prepregs under processing conditions[J]. Mechanics of Materials, 2016, 97: 118-134. |
24 | VALVERDE M A, BELNOUE J P H, KUPFER R, et al. Compaction behaviour of continuous fibre-reinforced thermoplastic composites under rapid processing conditions[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106549. |
25 | 满珈诚, 侯进森, 李哲夫, 等. 连续碳纤维增强热固性预浸料压实性能的试验研究[J]. 复合材料科学与工程, 2022(7): 45-51, 65. |
MAN J C, HOU J S, LI Z F, et al. Experimental study on compacting performance of continuous carbon fiber reinforced thermosetting prepreg[J]. Composites Science and Engineering, 2022(7): 45-51, 65 (in Chinese). | |
26 | 李哲夫, 刘卫平, 孙宝忠, 等. 未固化预浸料在热模压预成型过程中的黏弹性行为研究[J]. 复合材料科学与工程, 2023(2): 84-93. |
LI Z F, LIU W P, SUN B Z, et al. Investigation of the viscoelastic behavior in the hot press-forming process of uncured prepreg laminates[J]. Composites Science and Engineering, 2023(2): 84-93 (in Chinese). | |
27 | SORBA G, BINETRUY C, LEYGUE A, et al. Squeeze flow in heterogeneous unidirectional discontinuous viscous prepreg laminates: Experimental measurement and 3D modeling[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 196-207. |
28 | BELNOUE J P H, MESOGITIS T, NIXON-PEARSON O J, et al. Understanding and predicting defect formation in automated fibre placement prepreg laminates[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 196-206. |
29 | LI Z F, LIU W P, SUN B Z, et al. A numerical approach to characterize the compression and relaxation behavior of uncured prepreg laminates in the process of hot press-forming[J]. Materials Research Express, 2022, 9(5): 055102. |
30 | HUBERT P, POURSARTIP A. A method for the direct measurement of the fibre bed compaction curve of composite prepregs[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(2): 179-187. |
31 | SAMIR D, HAMID S. Determination of the in-plane shear rigidity modulus of a carbon non-crimp fabric from bias-extension data test[J]. Journal of Composite Materials, 2014, 48(22): 2729-2736. |
32 | LEBRUN G, BUREAU M N, DENAULT J. Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics[J]. Composite Structures, 2003, 61(4): 341-352. |
33 | LAUNAY J, HIVET G, DUONG A V, et al. Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements[J]. Composites Science and Technology, 2008, 68(2): 506-515. |
34 | ALSHAHRANI H, HOJJATI M. Influence of double-diaphragm vacuum compaction on deformation during forming of composite prepregs[J]. Journal of Science: Advanced Materials and Devices, 2016, 1(4): 507-511. |
35 | HARRISON P, CLIFFORD M J, LONG A C. Shear characterisation of viscous woven textile composites: A comparison between picture frame and bias extension experiments[J]. Composites Science and Technology, 2004, 64(10-11): 1453-1465. |
36 | LOMOV S V, VERPOEST I. Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements[J]. Composites Science and Technology, 2006, 66(7-8): 919-933. |
37 | HARRISON P, WIGGERS J, LONG A C. Normalization of shear test data for rate-independent compressible fabrics[J]. Journal of Composite Materials, 2008, 42(22): 2315-2344. |
38 | YU X B, CARTWRIGHT B, MCGUCKIN D, et al. Intra-ply shear locking in finite element analyses of woven fabric forming processes[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(5): 790-803. |
39 | BARBAGALLO G, MADEO A, AZEHAF I, et al. Bias extension test on an unbalanced woven composite reinforcement: experiments and modeling via a second-gradient continuum approach[J]. Journal of Composite Materials, 2017, 51(2): 153-170. |
40 | LARBERG Y R, ÅKERMO M, NORRBY M. On the in-plane deformability of cross-plied unidirectional prepreg[J]. Journal of Composite Materials, 2012, 46(8): 929-939. |
41 | HARRISON P, GOMES R, CURADO-CORREIA N. Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry[J]. Composites Part A: Applied Science and Manufacturing, 2013, 54: 56-69. |
42 | GROVES D J. A characterization of shear flow in continuous fibre thermoplastic laminates[J]. Composites, 1989, 20(1): 28-32. |
43 | GROVES D J, STOCKS D M. Rheology of thermoplastic-carbon fibre composite in the elastic and viscoelastic states[J]. Composites Manufacturing, 1991, 2(3-4): 179-184. |
44 | WHEELER A B, JONES R S. A characterization of anisotropic shear flow in continuous fibre composite materials[J]. Composites Manufacturing, 1991, 2(3-4): 192-196. |
45 | JONES R S, ROBERTS R W. Anisotropic shear flow in continuous fibre composites[J]. Composites, 1994, 25(3): 171-176. |
46 | HAANAPPEL S P, AKKERMAN R. Shear characterisation of uni-directional fibre reinforced thermoplastic melts by means of torsion[J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 8-26. |
47 | GOSHAWK J A, JONES R S. Structure reorganization during the rheological characterization of continuous fibre-reinforced composites in plane shear[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(4): 279-286. |
48 | STANLEY W F, MALLON P J. Intraply shear characterisation of a fibre reinforced thermoplastic composite[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(6): 939-948. |
49 | DYKES R J, MARTIN T A, BHATTACHARYYA D. Determination of longitudinal and transverse shear behaviour of continuous fibre-reinforced composites from vee-bending[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(1-2): 39-49. |
50 | MCGUINNESS G B, ÓBRÁDAIGH C M. Characterisation of thermoplastic composite melts in rhombus-shear: The picture-frame experiment[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(1-2): 115-132. |
51 | CHRISTENSEN R M. Effective viscous flow properties for fiber suspensions under concentrated conditions[J]. Journal of Rheology, 1993, 37(1): 103-121. |
52 | PIPES R B. Anisotropic viscosities of an oriented fiber composite with a power-law matrix[J]. Journal of Composite Materials, 1992, 26(10): 1536-1552. |
53 | HELLER K, HALLMANNSEDER M, COLIN D, et al. Comparing test methods for the intra-ply shear properties of uncured prepreg tapes[J]. Science and Engineering of Composite Materials, 2020, 27(1): 89-96. |
54 | MARTIN T A, BHATTACHARYYA D, COLLINS I F. Bending of fibre-reinforced thermoplastic sheets[J]. Composites Manufacturing, 1995, 6(3-4): 177-187. |
55 | MANDER S J. Roll forming of fibre-reinforced thermoplastic composite[D]. Auckland: The University of Auckland, 1998. |
56 | 杨志, 焦亚男, 谢军波, 等. 纺织复合材料纤维预制体力学性能测试方法研究进展[J]. 复合材料学报, 2022, 39(4): 1511-1533. |
YANG Z, JIAO Y N, XIE J B, et al. Research progress in testing methods of mechanical properties of textile composite fiber preforms[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1511-1533 (in Chinese). | |
57 | HIVET G, DUONG A V. A contribution to the analysis of the intrinsic shear behavior of fabrics[J]. Journal of Composite Materials, 2011, 45(6): 695-716. |
58 | MACK C, TAYLOR H M. 39-the fitting of woven cloth to surfaces[J]. Journal of the Textile Institute Transactions, 1956, 47(9): T477-T488. |
59 | 陈萍, 赵月青, 陈菲, 等 .单向碳纤维/环氧树脂预浸料叠层的面内变形行为[J].复合材料学报, 2020, 37(5): 1049-1055. |
CHEN P, ZHAO Y Q, CHEN F, et al. In-plane deformation behavior of the unidirectional carbon fiber/epoxy prepreg layups[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1049-1055 (in Chinese). | |
60 | CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(6): 1037-1053. |
61 | HÄRTEL F, HARRISON P. Evaluation of normalisation methods for uniaxial bias extension tests on engineering fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 61-69. |
62 | POTTER K. Bias extension measurements on cross-plied unidirectional prepreg[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(1): 63-73. |
63 | WANG Y, CHEA M K, BELNOUE J P H, et al. Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditions[J]. Composites Part A: Applied Science and Manufacturing, 2020, 133: 105865. |
64 | ZHAO Y Q, GU Y Z, ZHANG T, et al. Characterization of intra-ply shear behaviors of unidirectional prepregs during hot diaphragm forming process[J]. Polymer Composites, 2021, 42(2): 1008-1020. |
65 | LIU S C, SINKE J, DRANSFELD C. An inter-ply friction model for thermoset based fibre metal laminate in a hot-pressing process[J]. Composites Part B: Engineering, 2021, 227: 109400. |
66 | JOHNSTON A, VAZIRI R, POURSARTIP A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469. |
67 | KAUSHIK V, RAGHAVAN J. Experimental study of tool-part interaction during autoclave processing of thermoset polymer composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1210-1218. |
68 | 陈洁, 顾轶卓, 李敏, 等. 碳纤维/环氧预浸料摩擦滑移特性测试及其变化规律[J]. 复合材料学报, 2014, 31(1): 101-106. |
CHEN J, GU Y Z, LI M, et al. Measurement and evolution of frictional slipping behavior of carbon fiber/epoxy prepreg[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 101-106 (in Chinese). | |
69 | SUN J, GU Y Z, LI M, et al. Effect of forming temperature on the quality of hot diaphragm formed C-shaped thermosetting composite laminates[J]. Journal of Reinforced Plastics and Composites, 2012, 31(16): 1074-1087. |
70 | LARBERG Y. Forming of stacked unidirectional prepreg materials[D]. Stockholm: KTH Royal Institute of Technology, 2012. |
71 | SACHS U, AKKERMAN R, FETFATSIDIS K, et al. Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 289-298. |
72 | GREWAL H S, HOJJATI M. Inter-ply friction of unidirectional tape and woven fabric out-of-autoclave prepregs[J]. International Journal of Composite Materials, 2017, 7(6): 161-170. |
73 | GORCZYCA-COLE J L, SHERWOOD J A, CHEN J L. A friction model for thermostamping commingled glass-polypropylene woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 393-406. |
74 | RASHIDI A, MONTAZERIAN H, YESILCIMEN K, et al. Experimental characterization of the inter-ply shear behavior of dry and prepreg woven fabrics: Significance of mixed lubrication mode during thermoset composites processing[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105725. |
75 | LARBERG Y R, ÅKERMO M. On the interply friction of different generations of carbon/epoxy prepreg systems[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(9): 1067-1074. |
76 | ERLAND S, DODWELL T J, BUTLER R. Characterisation of inter-ply shear in uncured carbon fibre prepreg[J]. Composites Part A: Applied Science and Manufacturing, 2015, 77: 210-218. |
77 | WANG L D, XU P, PENG X Q, et al. Characterization of inter-ply slipping behaviors in hot diaphragm preforming: experiments and modelling[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 28-35. |
78 | ZHAO Y Q, ZHANG T, LI H F, et al. Characterization of prepreg-prepreg and prepreg-tool friction for unidirectional carbon fiber/epoxy prepreg during hot diaphragm forming process[J]. Polymer Testing, 2020, 84: 106440. |
79 | LI Z F, ZHAO D C, SUN B Z, et al. Experimental characterization and modeling of the inter-ply sliding behavior of unidirectional prepreg in the preforming process[J]. Materials Research Express, 2023, 10(3): 035602. |
80 | PIERIK E R, GROUVE W J B, WIJSKAMP S, et al. Modeling the effect of temperature and pressure on the peak and steady-state ply-ply friction response for UD C/PAEK tapes[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107671. |
81 | MURTAGH A M, LENNON J J, MALLON P J. Surface friction effects related to pressforming of continuous fibre thermoplastic composites[J]. Composites Manufacturing, 1995, 6(3-4): 169-175. |
82 | BIAN X X, GU Y Z, SUN J, et al. Effects of processing parameters on the forming quality of C-shaped thermosetting composite laminates in hot diaphragm forming process[J]. Applied Composite Materials, 2013, 20(5): 927-945. |
83 | LEBRUN G, BUREAU M N, DENAULT J. Thermoforming-stamping of continuous glass fiber/polypropylene composites: Interlaminar and tool-laminate shear properties[J]. Journal of Thermoplastic Composite Materials, 2004, 17(2): 137-165. |
84 | MARTIN C J, SEFERIS J C, WILHELM M A. Frictional resistance of thermoset prepregs and its influence on honeycomb composite processing[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(10): 943-951. |
85 | VANCLOOSTER K. Forming of multilayered fabric reinforced thermoplastic composites[D]. Leuven: University of Leuven, 2009. |
86 | ERSOY N, POTTER K, WISNOM M R, et al. An experimental method to study the frictional processes during composites manufacturing[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(11): 1536-1544. |
87 | DAS A, CHOONG G Y H, DILLARD D A, et al. Characterizing friction for fiber reinforced composites manufacturing: method development and effect of process parameters[J]. Composites Part B: Engineering, 2022, 236: 109777. |
88 | WANG J H, LONG A C, CLIFFORD M J, et al. Energy analysis of reinforcement deformations during viscous textile composite forming[C]∥AIP Conference Proceedings. College Park: American Institute of Physics, 2007, 907(1): 1098-1106. |
89 | DE BILBAO E, SOULAT D, HIVET G, et al. Experimental study of bending behaviour of reinforcements[J]. Experimental Mechanics, 2010, 50(3): 333-351. |
90 | WANG J H, LONG A C, CLIFFORD M J. Experimental measurement and predictive modelling of bending behaviour for viscous unidirectional composite materials[J]. International Journal of Material Forming, 2010, 3(2): 1253-1266. |
91 | LIANG B, HAMILA N, PEILLON M, et al. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 111-122. |
92 | DU Z Q, ZHOU T X, YAN N, et al. Measurement and characterization of bending stiffness for fabrics[J]. Fibers and Polymers, 2011, 12(1): 104-110. |
93 | PEIRCE F T. 26-the “handle” of cloth as a measurable quantity[J]. Journal of the Textile Institute Transactions, 1930, 21(9): T377-T416. |
94 | OWEN J D. An automatic cloth-bending-hysteresis tester and some of its applications[J]. Journal of the Textile Institute Transactions, 1966, 57(9): T435-T438. |
95 | SACHS U, AKKERMAN R. Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 333-341. |
96 | DANGORA L M, MITCHELL C J, SHERWOOD J A, et al. Predictive model for the detection of out-of-plane defects formed during textile-composite manufacture[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 102-112. |
97 | DANGORA L M, MITCHELL C, WHITE K D, et al. Characterization of temperature-dependent tensile and flexural rigidities of a cross-ply thermoplastic lamina with implementation into a forming model[J]. International Journal of Material Forming, 2018, 11(1): 43-52. |
98 | BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[J]. Composites Part B: Engineering, 2018, 141: 234-249. |
99 | ASTM. Standard Test Method for Stiffness of Fabrics: [S]. West Conshohocken: ASTM International, 2015. |
100 | POPPE C T. Process simulation of wet compression moulding for continuous fibre-reinforced polymers[D]. Karlsruhe: Karlsruhe Institute of Technology, 2021. |
101 | SOTEROPOULOS D, FETFATSIDIS K, SHERWOOD J A, et al. Digital method of analyzing the bending stiffness of non-crimp fabrics[C]∥ AIP Conference Proceedings. College Park: American Institute of Physics, 2011, 1353: 913-917. |
102 | POPPE C, ROSENKRANZ T, DÖRR D, et al. Comparative experimental and numerical analysis of bending behaviour of dry and low viscous infiltrated woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105466. |
103 | KOCIK M, UREK W, KRUCINSKA I, et al. Evaluating the bending rigidity of flat textiles with the use of an instron tensile tester[J]. Canadian Review of Sociology/revue Canadienne De Sociologie, 2005, 47(2): 203-205. |
[1] | 张胜男, 许英杰, 张卫红. 考虑固化残余应力影响的Z-pin增韧复材压缩性能预测方法[J]. 航空学报, 2024, 45(20): 429966-429966. |
[2] | 熊皓晨, 邱若凡, 韩信, 闫浩, 张涛, 尤延铖. 一种弯曲激波诱导爆震的起爆新方式[J]. 航空学报, 2024, 45(18): 129682-129682. |
[3] | 刘新, 尹文轩, 陈铎, 侯永博, 张露, 武湛君. 热塑性环氧树脂合成及增韧低温复合材料[J]. 航空学报, 2024, 45(16): 429623-429623. |
[4] | 向康深, 陈伟杰, 连健欣, 乔渭阳. 弯曲/倾斜静叶对涡轮单音噪声影响的数值分析[J]. 航空学报, 2024, 45(10): 129366-129366. |
[5] | 李志文, 蔡长春, 余欢, 徐志锋, 王振军, 李荣幸. Cf/Al复合材料复合编织结构T型件弯曲性能[J]. 航空学报, 2023, 44(10): 427510-427510. |
[6] | 程剑锐, 施崇广, 瞿丽霞, 徐悦, 尤延铖, 朱呈祥. 二维弯曲激波/湍流边界层干扰流动理论建模[J]. 航空学报, 2022, 43(9): 125993-125993. |
[7] | 岳波, 许英杰, 徐宁鑫, 张卫红. 热压罐成型框架式模具结构拓扑优化设计[J]. 航空学报, 2022, 43(3): 425141-425141. |
[8] | 韩重韬, 宋令慧, 段国升, 武保林. 平均应力对AZ31B挤压镁合金棘轮行为的影响[J]. 航空学报, 2022, 43(12): 426060-426060. |
[9] | 罗楚养, 江晟达, 陈梦熊, 张朋, 夏旭峰, 蔡培培. 基于高温树脂传递模塑工艺的碳纤维/聚酰亚胺复合材料连接环制备与验证[J]. 航空学报, 2021, 42(7): 625438-625438. |
[10] | 段佳桐, 隋福成, 刘汉海, 解放, 欧阳天, 鲍蕊. 弯曲载荷下薄壁结构疲劳裂纹扩展性能[J]. 航空学报, 2021, 42(5): 524326-524326. |
[11] | 马艳红, 倪耀宇, 陈雪骑, 邓旺群, 杨海. 长拉杆-止口连接弯曲刚度损失及对转子系统振动响应影响[J]. 航空学报, 2021, 42(3): 223861-223861. |
[12] | 王雪明, 谢富原. 碳纤维/双马树脂复合材料整体成型过程分层扩展行为实验研究[J]. 航空学报, 2021, 42(2): 424918-424918. |
[13] | 崔文斌, 陈煊, 陈超, 程礼, 丁均梁, 张晖. CFRP超高周疲劳损伤演化过程[J]. 航空学报, 2020, 41(1): 223212-223212. |
[14] | 马成, 赵聪, 刘兴宇, 张建宝, 王显峰. 气囊硬度对固化后帽型长桁厚度的影响[J]. 航空学报, 2019, 40(6): 422667-422667. |
[15] | 宋清华, 刘卫平, 刘小林, 刘奎, 杨洋, 陈吉平. 热塑性复合材料原位成型过程铺层间结合强度[J]. 航空学报, 2019, 40(4): 422543-422543. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 478
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学