| [1] |
李龙彪. 陶瓷基复合材料在航空发动机应用与适航符合性验证研究进展[J]. 复合材料学报, 2025, 42(1): 54-87.
|
|
LI L B. Research progress on application and airworthiness compliance validation of ceramicmatrix composites in aeroengines[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 54-87 (in Chinese).
|
| [2] |
赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报, 2021, 42(6): 136-161.
|
|
ZHAO C W, MAO J K, TU Z C, et al. Thermal analysis methods for high-temperature ceramic matrix compo-site components: Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 136-161 (in Chinese).
|
| [3] |
LI L B. Modeling strength degradation of fiber-reinforced ceramic-matrix composites under cyclic loa-ding at room and elevated temperatures[J]. Materials Science and Engineering: A, 2017, 695: 221-229.
|
| [4] |
SONG C K, YE F, CHENG L F, et al. Long-term ceramic matrix composite for aeroengine[J]. Journal of Advanced Ceramics, 2022, 11(9): 1343-1374.
|
| [5] |
ZHAO L B, YANG W, CAO T C, et al. A progressive failure analysis of all-C/SiC composite multi-bolt joints[J]. Composite Structures, 2018, 202: 1059-1068.
|
| [6] |
陈强, 张盛, 冯雨春, 等. 考虑分层损伤的平纹编织SiC/SiC带孔板-金属销钉连接结构失效分析[J]. 航空动力学报, 2025, 40(5): 96-106.
|
|
CHEN Q, ZHANG S, FENG Y C, et al. Failure analysis of plain woven SiC/SiC perforated plate-metal pin connection structure considering delamination damage[J]. Journal of Aerospace Power, 2025, 40(5): 96-106 (in Chinese).
|
| [7] |
LI G D, WU X F, ZHANG C R, et al. Theoretical simulation and experimental verification of C/SiC joints with pins or bolts[J]. Materials & Design, 2014, 53: 1071-1076.
|
| [8] |
曾青华, 陈炫午, 曾琦, 等. 燃烧室陶瓷复合材料火焰筒应用与技术分析[J]. 航空动力学报, 2024, 39(9): 223-233.
|
|
ZENG Q H, CHEN X W, ZENG Q, et al. Application and technical analysis of ceramic composite combustor liner[J]. Journal of Aerospace Power, 2024, 39(9): 223-233 (in Chinese).
|
| [9] |
王鸣, 董志国, 张晓越, 等. 连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用[J]. 航空制造技术, 2014, 57(6): 10-13.
|
|
WANG M, DONG Z G, ZHANG X Y, et al. Application of continuous fiber reinforced ceramic matrix compo-sites in aeroengine[J]. Aeronautical Manufacturing Technology, 2014, 57(6): 10-13 (in Chinese).
|
| [10] |
韩笑. 陶瓷基复合材料/金属连接结构高温力学行为研究[D]. 南京: 南京航空航天大学, 2023: 99-108.
|
|
HAN X. Research on high-temperature mechanical behavior of ceramic matrix composites/metal connection structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023: 99-108 (in Chinese) .
|
| [11] |
万卜铭, 唐超, 胡畅, 等. 一种基于柔性连接结构的陶瓷基回流燃烧室火焰筒: CN118189223A[P]. 2024-06-14.
|
|
WAN B M, TANG C, HU C, et al. A ceramic-based reflux combustion chamber flame tube with a flexible connection structure: CN118189223A[P]. 2024-06-14 (in Chinese).
|
| [12] |
《中国航空材料手册》委员会. 中国航空材料手册: 第2卷——变形高温合金,铸造高温合金[M]. 北京: 中国标准出版社, 2002.
|
|
Editorial Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook (Vol. 2): wrought superalloys; cast superalloys[M]. Beijing: China Standards Press, 2002 (in Chinese).
|
| [13] |
康国政, 阚前华. 工程材料的棘轮行为和棘轮-疲劳交互作用[M]. 成都: 西南交通大学出版社, 2014.
|
|
KANG G Z, KAN Q H. Ratcheting behavior and ratchet-fatigue interaction of engineering materials[M]. Chengdu: Southwest Jiaotong University Press, 2014 (in Chinese).
|
| [14] |
康国政. 材料的棘轮行为及棘轮-疲劳交互作用研究[C]∥中国科协第235次青年科学家论坛. 北京: 中国力学学会, 2011: 50-53.
|
|
KANG G Z. Study on the ratchet behavior of materials and the ratchet-fatigue interaction[C]∥The 235th Youth Scientist Forum of the Chinese Association for Science and Technology. Beijing: China Society of Mechanics, 2011: 50-53 (in Chinese).
|
| [15] |
CHEN G, LU L T, CUI Y, et al. Ratcheting and low-cycle fatigue characterizations of extruded AZ31B Mg alloy with and without corrosive environment[J]. International Journal of Fatigue, 2015, 80: 364-371.
|
| [16] |
KONG W W, YUAN C, ZHANG B N, et al. Investigation on low-cycle fatigue behaviors of wrought superalloy GH4742 at room-temperature and 700 ℃[J]. Materials Science and Engineering: A, 2019, 751: 226-236.
|
| [17] |
CHEN G, ZHANG Y, XU D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 ℃[J]. Materials Science and Engineering: A, 2016, 655: 175-182.
|
| [18] |
MUKHERJEE S, BARAT K, SIVAPRASAD S, et al. Elevated temperature low cycle fatigue behaviour of Haynes 282 and its correlation with microstructure-Effect of ageing conditions[J]. Materials Science and Enginee-ring: A, 2019, 762: 138073.
|
| [19] |
YU J J, SUN X F, JIN T, et al. High temperature creep and low cycle fatigue of a nickel-base superalloy[J]. Materials Science and Engineering: A, 2010, 527(9): 2379-2389.
|
| [20] |
HOLLÄNDER D, KULAWINSKI D, THIELE M, et al. Investigation of isothermal and thermo-mechanical fatigue behavior of the nickel-base superalloy IN738LC using standardized and advanced test methods[J]. Mate-rials Science and Engineering: A, 2016, 670: 314-324.
|
| [21] |
YOON D, HEO I, KIM J, et al. Hold time-low cycle fatigue behavior of nickel based hastelloy X at elevated temperatures[J]. International Journal of Precision Enginee-ring and Manufacturing, 2019, 20(1): 147-157.
|
| [22] |
LEE S Y, LU Y L, LIAW P K, et al. Tensile-hold low-cycle-fatigue properties of solid-solution-strengthened superalloys at elevated temperatures[J]. Materials Science and Engineering: A, 2009, 504(1/2): 64-72.
|
| [23] |
KONG W W, WANG Y Q, CHEN Y P, et al. Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923 K[J]. Materials Science and Engineering: A, 2022, 831: 142173.
|
| [24] |
SHI H R, CHEN G, WANG Y, et al. Ratcheting beha-vior of pressurized elbow pipe with local wall thinning[J]. International Journal of Pressure Vessels and Piping, 2013, 102/103: 14-23.
|
| [25] |
国家技术监督局. 管法兰垫片压缩率及回弹率试验方法: [S]. 北京: 中国标准出版社, 1991.
|
|
State Bureau of Quality and Technical Supervision of the People’s Republic of China. Test method for compressibility and recorery of gaskets for pipe flanges: [S]. Beijing: Standards Press of China, 1991 (in Chinese).
|