| [1] |
候正全, 蒋斌, 王煜烨, 等. 镁合金新材料及制备加工新技术发展与应用[J]. 上海航天(中英文), 2021, 38(3): 119-133.
|
|
HOU Z Q, JIANG B, WANG Y Y, et al. Development and application of new magnesium alloy materials and their new preparation and processing technologies[J]. Aerospace Shanghai (Chinese & English), 2021, 38(3): 119-133 (in Chinese).
|
| [2] |
MA G H, XIAO H, YE J, et al. Research status and development of magnesium matrix composites[J]. Materials Science and Technology, 2020, 36(6): 645-653.
|
| [3] |
JIN Z Z, ZHA M, WANG S Q, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility[J]. Journal of Magnesium and Alloys, 2022, 10(5): 1191-1206.
|
| [4] |
YANG J R, ZHU Z Q, HAN S J, et al. Evolution, limitations, advantages, and future challenges of magnesium alloys as materials for aerospace applications[J]. Journal of Alloys and Compounds, 2024, 1008: 176707.
|
| [5] |
郭居魁, 马骁, 任凌宝, 等. 基于ProCAST的某超大型镁合金飞机吊舱铸件工艺仿真与改进[J]. 热加工工艺, 2024, 53(11): 138-143, 149.
|
|
GUO J K, MA X, REN L B, et al. Process simulation and improvement of ultra-large magnesium alloy aircraft pod casting based on ProCAST[J]. Hot Working Technology, 2024, 53(11): 138-143, 149 (in Chinese).
|
| [6] |
DZIUBIŃSKA A, GONTARZ A, HORZELSKA K, et al. The microstructure and mechanical properties of AZ31 magnesium alloy aircraft brackets produced by a new forging technology[J]. Procedia Manufacturing, 2015, 2: 337-341.
|
| [7] |
王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5): 524651.
|
|
WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524651 (in Chinese).
|
| [8] |
ISMAEELA, LI X X, XU D S, et al. Effect of texture on the fatigue crack initiation of a dual-phase titanium alloy[J]. Journal of Materials Research and Technology, 2024, 33: 6319-6327.
|
| [9] |
YANG Y B, CHEN J, GAO L X, et al. Low-cycle fatigue behaviour of extruded 7075 aluminium alloy bar: Competition of grain sizes and textures[J]. Materials Science and Engineering: A, 2024, 897: 146258.
|
| [10] |
JIA R C, ZENG W D, ZHAO Z B, et al. Crack nucleation and dislocation activities in titanium alloys with the strong transverse texture: Insights for enhancing dwell fatigue resistance[J]. International Journal of Plasticity, 2024, 175: 103938.
|
| [11] |
GRAFF S, BROCKS W, STEGLICH D. Yielding of magnesium: From single crystal to polycrystalline aggregates[J]. International Journal of Plasticity, 2007, 23(12): 1957-1978.
|
| [12] |
CHANG Y R, KOCHMANN D M. A variational constitutive model for slip-twinning interactions in hcp metals: Application to single-and polycrystalline magnesium[J]. International Journal of Plasticity, 2015, 73: 39-61.
|
| [13] |
WANG Y Q, CULBERTSON D, JIANG Y Y. An experimental study of anisotropic fatigue behavior of rolled AZ31B magnesium alloy[J]. Materials & Design, 2020, 186: 108266.
|
| [14] |
DUTTA K, RAY K K. Ratcheting phenomenon and post-ratcheting tensile behaviour of an aluminum alloy[J]. Materials Science and Engineering: A, 2012, 540: 30-37.
|
| [15] |
WANG H, JING H Y, ZHAO L, et al. Uniaxial ratcheting behaviour of 304 L stainless steel and ER308L weld joints[J]. Materials Science and Engineering: A, 2017, 708: 21-42.
|
| [16] |
DUAN G S, CHU Y H, SONG L H, et al. The effect of stress amplitude on ratcheting strain development in an extruded AZ31B magnesium alloy under different mean stresses[J]. Materials Science and Engineering: A, 2022, 860: 144226.
|
| [17] |
HONG S G, PARK S H, LEE C S. Role of {10-12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy[J]. Acta Materialia, 2010, 58(18): 5873-5885.
|
| [18] |
武保林. 镁合金晶体取向与变形行为机制研究概述[J]. 沈阳航空航天大学学报, 2015, 32(6): 1-27.
|
|
WU B L. Introduction to the crystal orientations and deformation behaviors and mechanisms of magnesium alloys[J]. Journal of Shenyang Aerospace University, 2015, 32(6): 1-27 (in Chinese).
|
| [19] |
KOIKE J, FUJIYAMA N, ANDO D, et al. Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys[J]. Scripta Materialia, 2010, 63(7): 747-750.
|
| [20] |
YANG F L, WANG Q, ZHANG Z. Evolution characte-ristics of microstructure and twin in high-cycle fatigue of AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(08): 2693-2701.
|
| [21] |
WU L, JAIN A, BROWN D W, et al. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A[J]. Acta Materialia, 2008, 56(4): 688-695.
|
| [22] |
ISHIHARA S, TANEGUCHI S, SHIBATA H, et al. Anisotropy of the fatigue behavior of extruded and rolled magnesium alloys[J]. International Journal of Fatigue, 2013, 50: 94-100.
|
| [23] |
SHI W S, HU J Q, SUN K Q, et al. An experimental study of anisotropic fatigue behavior of rolled ZK60 magnesium alloy[J]. Materials Science and Engineering: A, 2022, 859: 144254.
|
| [24] |
XIONG Y, GONG X, JIANG Y. Effect of initial texture on fatigue properties of extruded ZK60 magnesium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(7): 1504-1513.
|
| [25] |
DUAN G S, GUAN Z W, SONG L H, et al. Dual frequency domain characteristics of ratcheting behavior of AZ31B alloy under asymmetrically stress-controlled loading mode[J]. Materials Characterization, 2023, 196: 112574.
|
| [26] |
SUN T, XIE Y J, QIN L D, et al. Investigation on uniaxial ratcheting fatigue behaviors and microstructure evolution of ultrafine-grained 6061 aluminum alloy[J]. Journal of Materials Research and Technology, 2022, 21: 1353-1364.
|
| [27] |
师雨晴, 段国升, 宋令慧, 等. 循环加载频率对镁合金棘轮应变的影响[J]. 航空学报, 2024, 45(24): 430455.
|
|
SHI Y Q, DUAN G S, SONG L H, et al. Effects of cyclic loading frequency on ratcheting of magnesium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 430455 (in Chinese).
|
| [28] |
LEI Y, LI H, LIU Y J, et al. Experimental study on uniaxial ratchetting-fatigue interaction of extruded AZ31 magnesium alloy with different plastic deformation mechanisms[J]. Journal of Magnesium and Alloys, 2023, 11(1): 379-391.
|
| [29] |
LIN Y C, LIU Z H, CHEN X M, et al. Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress-controlled loadings[J]. Materials Science and Engineering: A, 2013, 573: 234-244.
|
| [30] |
GRYGUC A, BEHRAVESH S B, SHAHA S K, et al. Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys[J]. International Journal of Fatigue, 2018, 116: 429-438.
|
| [31] |
QIAO H, AGNEW S R, WU P D. Modeling twinning and detwinning behavior of Mg alloy ZK60A during monotonic and cyclic loading[J]. International Journal of Plasticity, 2015, 65: 61-84.
|
| [32] |
LIN Y, CHEN X M, CHEN G. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation[J]. Journal of Alloys and Compounds, 1991, 509: 6838-6843.
|
| [33] |
BEGUM S, CHEN D, XU S, et al. Low cycle fatigue properties of an extruded AZ31 magnesium alloy[J]. International Journal of Fatigue, 2009, 31(4): 726-735.
|
| [34] |
LOU X Y, LI M, BOGER R K, et al. Hardening evolution of AZ31B Mg sheet[J]. International Journal of Plasticity, 2007, 23(1): 44-86.
|
| [35] |
MORROW J. Cyclic plastic strain energy and fatigue of metals[C]∥ Internal Friction, Damping, and Cyclic Plasticity. West Conshohocken: ASTM International, 2009: STP43764S.
|
| [36] |
SHIOZAWA K, KITAJIMA J, KAMINASHI T, et al. Low-cycle fatigue deformation behavior and evaluation of fatigue life on extruded magnesium alloys[J]. Procedia Engineering, 2011, 10: 1244-1249.
|
| [37] |
刘晏宇, 毛萍莉, 刘正, 等. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
|
|
LIU Y Y, MAO P L, LIU Z, et al. Theoretical calculation of Schmid factor and its application under high strain rate deformation in magnesium alloys[J]. Acta Metallurgica Sinica, 2018, 54(6): 950-958 (in Chinese).
|