1 |
叶培建, 杨孟飞, 彭兢, 等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学(技术科学), 2015, 45(3): 229-238.
|
|
YE P J, YANG M F, PENG J, et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. Scientia Sinica (Technologica), 2015, 45(3): 229-238 (in Chinese).
|
2 |
林斌,江长虹,吴卓. 降落伞在太空探测中的应用[C]∥2011年第二十四届全国空间探测学术交流会. 2011: 1-13.
|
|
LING B, JIANG C H, WU Z. Parachute applications for space exploration [C]∥24th National Academic Exchange Conference on Space Exploration. 2011: 1-13. (in Chinese)
|
3 |
CRUZ J, LINGARD J. Aerodynamic decelerators for planetary exploration: Past, present, and future[C]∥Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2006.
|
4 |
HASSANALIAN M, RICE D, ABDELKEFI A. Evolution of space drones for planetary exploration: A review[J]. Progress in Aerospace Sciences, 2018, 97: 61-105.
|
5 |
NOLTE L, SOMMER S. Probing a planetary atmosphere-Pioneer Venus spacecraft description[C]∥Proceedings of the Conference on the Exploration of the Outer Planets. Reston: AIAA, 1975.
|
6 |
CORRIDAN R, GIVENS J, KEPLEY B. Transonic wind-tunnel investigation of the Galileo Probe parachute configuration[C]∥Proceedings of the 8th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1984.
|
7 |
LEBRETON J P, MATSON D L. The Huygens probe: Science, payload and mission overview[J]. Space Science Reviews, 2002, 104: 59-100.
|
8 |
XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728.
|
9 |
周宁, 韦彦靖, 贾贺, 等. 基于木星大气环境的降落伞系统气动特性研究[J]. 航天返回与遥感, 2023, 44(2): 1-13.
|
|
ZHOU N, WEI Y J, JIA H, et al. Study on the aerodynamic performances of parachute system based on the jupiter’s atmospheres[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(2): 1-13 (in Chinese).
|
10 |
JIA H, BAO W L, RONG W, et al. Numerical study on aerodynamic characteristics of parachute models for future Jupiter exploration[J]. Space: Science & Technology, 2024, 4: 0116.
|
11 |
STEINBERG S, SIEMERS I III P, SLAYMAN R. Development of the Viking parachute configuration by wind tunnel investigation[C]∥4th Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1973.
|
12 |
MOOG R D, MICHELF C. Balloon launched Viking decelerator test program summary report: NASA CR-112288[R]. Washington, D.C.: NASA, 1973.
|
13 |
SENGUPTA A, HALL L, WERNET M. Fluid structure interaction of parachutes in supersonic planetary entry[C]∥21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011.
|
14 |
RODIER R, THUSS R, TERHUNE J. Parachute design for Galileo Jupiter entry probe[C]∥7th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1981.
|
15 |
MCMENAMIN H, POCHETTINO L. Galileo parachute system modification program[C]∥8th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1984.
|
16 |
GAO X L, ZHANG Q B, TANG Q G. Numerical modelling of Mars supersonic disk-gap-band parachute inflation[J]. Advances in Space Research, 2016, 57(11): 2259-2272.
|
17 |
杨雪. 超声速降落伞流场-结构数值仿真关键技术问题研究[D]. 南京: 南京航空航天大学, 2019.
|
|
YANG X. Research on key technical problems of numerical simulation of supersonic parachute flow field-structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
|
18 |
KARAGIOZIS K, KAMAKOTI R, CIRAK F, et al. A computational study of supersonic disk-gap-band parachutes using large-eddy simulation coupled to a structural membrane[J]. Journal of Fluids and Structures, 2011, 27(2): 175-192.
|
19 |
XUE X P, JIA H, RONG W, et al. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems[J]. Chinese Journal of Aeronautics, 2022, 35(4): 45-54.
|
20 |
HUANG D Z, AVERY P, FARHAT C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
|
21 |
BOUSTANI J, KENWAY G, CADIEUX F, et al. Fluid-structure interaction simulations of the ASPIRE SR01 supersonic parachute[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
|
22 |
代雨柔, 李健, 荣伟, 等 .超声速盘缝带伞不同盘收口比下气动性能 [J].航空学报, 2024, 45 (7): 128811.
|
|
DAI Y R, LI J, RONG W, et al. Aerodynamic characteristics of supersonic disk-gap-band parachute under different reefing ratio[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45 (7): 128811 (in Chinese).
|
23 |
贾贺. 行星探测用降落伞流固耦合机理及其非定常气动特性研究[D]. 南京: 南京航空航天大学, 2024.
|
|
JIA H. Research on the fluid structure coupling mechanism and unsteady aerodynamic characteristics of parachutes for planetary exploration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2024. (in Chinese).
|
24 |
MCMENAMIN H. Galileo parachute system performance: AIAA-1997-1510[R]. Reston: AIAA, 1997.
|
25 |
贾贺, 邹天琪, 荣伟, 等. 不同行星大气下直径比对降落伞气动特性的影响研究[J]. 航天返回与遥感, 2023, 44(1): 70-83.
|
|
JIA H, ZOU T, RONG W, et al. Influence mechanism of diameter ratio on the aerodynamic performance of permeable parachute system under different atmospheric conditions[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 70-83 (in Chinese).
|
26 |
XUE X P, NAKAMURA Y, MORI K, et al. Numerical investigation of effects of angle-of-attack on a parachute-like two-body system[J]. Aerospace Science and Technology, 2017, 69: 370-386.
|
27 |
ADAMS D, RIVELLINI T. Mars science laboratory’s parachute qualification approach[C]∥ 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009.
|
28 |
王希季. 航天器进入与返回技术-上册[M]. 北京: 宇航出版社, 1991.
|
|
WANG X J. Spacecraft entry and return technology-part I[M]. Beijing: China Astronautic Publishing House, 1991 (in Chinese).
|
29 |
UNDERWOOD J. Development testing of disk-gap-band parachutes for the Huygens probe: AIAA-1995-1549[R]. Reston: AIAA, 1995.
|
30 |
ZHANG Z C, COOK Jr G, IM K. Multiphase flow CESE solver in LS-DYNA[C]∥16th International LS-DYNA Users Conference. 2020.
|
31 |
ZHANG Z C, COOK Jr G, IM K. Overview of the CESE compressible fluid and FSI solvers[C]∥16th International LS-DYNA Users Conference. 2020.
|
32 |
CHANG S C. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations[J]. Journal of Computational Physics, 1995, 119(2): 295-324.
|
33 |
白桥栋. CE/SE方法在内弹道两相流中应用的研究[D]. 南京: 南京理工大学, 2007.
|
|
BAI Q D. The study of the method of conservation element and solution element and its application on interior ballistic two-phase flow[D]. Nanjing: Nanjing University of Science and Technology, 2007 (in Chinese).
|
34 |
魏兰. 基于CE/SE方法的热环境中炸药复杂响应过程研究[D]. 绵阳:中国工程物理研究院, 2015.
|
|
WEI L. Study on the complex response processes of explosive in thermal environment based on CE/SE method[D]. Mianyang: Institute of Applied Physics and Computational Mathematics, 2015 (in Chinese).
|
35 |
BELYTSCHKO T, LIN J I, CHEN-SHYH T. Explicit algorithms for the nonlinear dynamics of shells[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 42(2): 225-251.
|
36 |
IM K, COOK Jr G, ZHANG Z C. FSI based on CESE compressible flow solver with detailed finite rate chemistry[C]∥16th International Ls-dyna Users Conference. 2020.
|
37 |
BOUSTANI J, BROWNE O M F, WENK J F J. F., et al. Fluid-structure interactions with geometrically nonlinear deformations: AIAA-2019-1896[R]. Reston: AIAA, 2019.
|