航空学报 > 2024, Vol. 45 Issue (21): 130126-130126   doi: 10.7527/S1000-6893.2024.30126

耦合双层参数更新的改进PCE模型在燃油离心泵不确定性分析中的应用

符江锋1,2, 仲世杰1, 刘显为1(), 魏鹏飞1, 黄瀚霆1   

  1. 1.西北工业大学 动力与能源学院,西安 710072
    2.西北工业大学 先进动力研究院,成都 610299
  • 收稿日期:2024-01-09 修回日期:2024-02-01 接受日期:2024-03-20 出版日期:2024-04-18 发布日期:2024-03-29
  • 通讯作者: 刘显为 E-mail:lxw@mail.nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(52372396);国家科技重大专项(J2019-V-0016-0111);航空发动机及燃气轮机基础科学中心项目(P2022-B-V-003-001);国防基础科研项目(JCKY2022607C002);中国航发产学研合作项目(HFZL2022CXY013);陕西省重点研发计划高校联合重点项目(2021GXLH-01-16)

Improved PCE model with coupled double-layer parameter updating for uncertainty analysis in fuel centrifugal pump

Jiangfeng FU1,2, Shijie ZHONG1, Xianwei LIU1(), Pengfei WEI1, Hanting HUANG1   

  1. 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
    2.Institute of Advanced Integration Technology,Northwestern Polytechnical University,Chengdu 610299,China
  • Received:2024-01-09 Revised:2024-02-01 Accepted:2024-03-20 Online:2024-04-18 Published:2024-03-29
  • Contact: Xianwei LIU E-mail:lxw@mail.nwpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52372396);National Science and Technology Major Project of China(J2019-V-0016-0111);Science Center for Gas Turbine Project(P2022-B-V-003-001);Defense Industrial Technology Development Program(JCKY2022607C002);AECC Industry University Cooperation Project(HFZL2022CXY013);Key R&D University Joint Key Project of Shaanxi Province(2021GXLH-01-16)

摘要:

叶片加工和航空发动机的极端多变工况带来的不确定性因素,是影响燃油离心泵性能和流场变异性的关键因素。本文提出了一种基于CFD机理建模与代理模型的同步分析方法。首先,基于Karhuben-Loève(KL)变换理论进行了离心泵三维叶片的轮廓度偏差不确定性建模;其次,嵌套最小角回归(LAR)算法,对混沌多项式展开(PCE)模型进行双层参数更新,构建了高精度的代理模型;最后,以某型燃油离心泵为研究对象,基于CFD仿真及试验验证和PCE代理模型完成了离心泵的不确定性分析。研究结果表明:KL变换能够仅通过9个输入参数描述三维叶片轮廓度偏差不确定性;耦合双层参数更新的改进PCE模型在多个离心泵工况下,其准确度指标较未改进之前平均提高了27.6%;离心泵叶片轮廓度加工偏差范围控制在-0.3 ~ 0.3 mm内即可保证离心泵性能不确定性大幅减小;轮毂处叶片轮廓度偏差,对流场的不确定性影响较轮缘和中间截面叶片轮廓度偏差大,而转速是工况中影响燃油泵流场不确定性的核心工况参数。

关键词: 航空发动机, 燃油离心泵, KL变换, 耦合双层参数更新的改进PCE模型, 性能不确定性, 流场不确定性

Abstract:

Blade manufacturing and extreme operating conditions in aircraft engines introduce uncertainty factors that significantly impact the performance and flow field variability of fuel centrifugal pumps. This paper proposes a synchronized analysis method based on CFD mechanistic models and surrogate models. Firstly, based on the Karhuben-Loève (KL) transform theory, uncertainty modeling of three-dimensional blade profile errors in the centrifugal pump was conducted. Secondly, nesting the Least Angle Regression (LAR) algorithm, we applied a double-layer parameter update to the Polynomial Chaos Expansion (PCE) model, constructing a high-precision surrogate model. Finally, employing a specific type of fuel centrifugal pump as the research object, we accomplished uncertainty analysis of the centrifugal pump based on CFD simulations, experimental verification, and the PCE surrogate model. The research demonstrates that the KL transform efficiently describes uncertainty in the three-dimensional blade profile error using only 9 input parameters. The improved PCE model with coupled double-layer parameter updating exhibits an average increase of 27.6% in accuracy metrics across multiple centrifugal pump conditions compared to the unimproved model. Controlling the blade profile error within -0.3 to 0.3 mm at the hub significantly reduces uncertainty in centrifugal pump performance. The blade profile errors at the hub have a greater impact on flow field uncertainty than those at the shroud and midsection, while speed is a crucial operational parameter affecting uncertainty in the fuel pump flow field.

Key words: aircraft engines, fuel centrifugal pump, KL transform, improved PCE model with coupled double-layer parameter updating, performance uncertainty, flow field uncertainty

中图分类号: