1 |
易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 1-17.
|
|
YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007: 1-17 (in Chinese).
|
2 |
易贤, 李维浩, 王应宇, 等. 飞机结冰传感器安装位置确定方法[J]. 实验流体力学, 2018, 32(2): 48-54.
|
|
YI X, LI W H, WANG Y Y, et al. Method of determining the location for aircraft icing prober[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 48-54 (in Chinese).
|
3 |
何磊, 钱炜祺, 董康生, 等. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报, 2023, 44(5): 59-72.
|
|
HE L, QIAN W Q, DONG K S, et al. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 59-72 (in Chinese).
|
4 |
马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 627817.
|
|
MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627817 (in Chinese).
|
5 |
高郭池, 张波, 全敬泽, 等. 正常类飞机自然结冰试飞适航审定技术[J]. 航空学报, 2024, 45(1): 195-216.
|
|
GAO G C, ZHANG B, QUAN J Z, et al. Airworthiness certification technology of normal aircraft natural icing flight test[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 195-216 (in Chinese).
|
6 |
王华, 王以伦, 张滨华. 基于磁致伸缩原理的结冰传感器设计理论[J]. 电工技术学报, 2003, 18(6): 77-79, 11.
|
|
WANG H, WANG Y L, ZHANG B H. Theory of designing ice detector based on magnetostriction[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 77-79, 11 (in Chinese).
|
7 |
白天, 朱春玲, 李清英, 等. 压电双晶片悬臂梁结构用于结冰探测的研究[J]. 航空学报, 2013, 34(5): 1073-1082.
|
|
BAI T, ZHU C L, LI Q Y, et al. Study of bimorph piezoelectric cantilever structure used on icing detection[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1073-1082 (in Chinese).
|
8 |
尹胜生. 飞机机场地面结冰探测系统研究与设计[D]. 武汉: 华中科技大学, 2012: 1-12.
|
|
YIN S S. Icing detection system for aircraft on airport ground[D]. Wuhan: Huazhong University of Science and Technology, 2012: 1-12 (in Chinese).
|
9 |
张镇, 葛俊锋, 叶林, 等. 基于神经网络的主动式红外结冰探测[J]. 华中科技大学学报(自然科学版), 2010, 38(6): 1-3.
|
|
ZHANG Z, GE J F, YE L, et al. Active infrared icing detection using neural networks[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(6): 1-3 (in Chinese).
|
10 |
张龙浩. 光纤阵列式结冰探测系统的研究[D]. 武汉: 华中科技大学, 2013.
|
|
ZHANG L H. The research of optical fiber array icing detection system[D].Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese).
|
11 |
ZOU J H, YE L, GE J F, et al. Novel fiber optic sensor for ice type detection[J]. Measurement, 2013, 46(2): 881-886.
|
12 |
AMIROPOULOS K, SPASOPOULOS D, IKIADES A. Fiber optic sensor for ice detection on aerodynamic surfaces using plastic optic fiber tapers[C]∥Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Washington, D.C.: OSA, 2018: SeM4E.6.
|
13 |
李洪宇, 桂康, 葛俊锋, 等. 基于阻抗测量阵列的区域结冰探测方法研究[J]. 科学技术创新, 2022(29): 179-182.
|
|
LI H Y, GUI K, GE J F, et al. Area icing detection method based on impedance measurement array[J]. Scientific and Technological Innovation, 2022(29): 179-182 (in Chinese).
|
14 |
任宏宇, 苑丹丹, 桂康, 等. 复阻抗式结冰探测技术的温度补偿方法研究[J]. 仪器仪表学报, 2021, 42(6): 88-94.
|
|
REN H Y, YUAN D D, GUI K, et al. A temperature compensation method for complex impedance ice detection[J]. Chinese Journal of Scientific Instrument, 2021, 42(6): 88-94 (in Chinese).
|
15 |
赵伟伟, 朱春玲, 陶明杰, 等. 超声导波技术用于飞机结冰探测的实验研究[J]. 压电与声光, 2018, 40(2): 269-275.
|
|
ZHAO W W, ZHU C L, TAO M J, et al. Experimental study on ultrasonic guided wave technology for aircraft icing detection[J]. Piezoelectrics & Acoustooptics, 2018, 40(2): 269-275 (in Chinese).
|
16 |
YANG L, CHEN W L, BOND L J, et al. A feasibility study to identify ice types by measuring attenuation of ultrasonic waves for aircraft icing detection[C]∥ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. New York: ASME, 2014:FEDS M2014-21227.
|
17 |
HSU D K, MARGETAN F J, WORMLEY S J, et al. Ultrasonic detection of icing onset and accretion thickness on aircraft[J]. The Journal of the Acoustical Society of America, 1993, 94(): 1804.
|
18 |
刘琦. 基于超声导波的波导结构频散分析与覆冰响应[D]. 哈尔滨: 哈尔滨工程大学, 2017: 3-4.
|
|
LIU Q. The ultrasonic guide-wave dispersion analysis of the waveguide structure and the icing response[D]. Harbin: Harbin Engineering University, 2017: 3-4 (in Chinese).
|
19 |
ROSE J L. Ultrasonic Guided Waves in Solid Media[M]. Cambridge: Cambridge University Press, 2014.
|
20 |
NISSABOURI S, ALLAMI M EL, BAKHCHA M. Lamb waves propagation Plotting the dispersion curves[C]∥International Conference on Computing Wireless and Communication Systems. Morocco: EAI, 2016: 149-152.
|
21 |
NISSABOURI S, ALLAMI M EL, BOUTYOUR E H. Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates[J]. Comptes Rendus Mécanique, 2020, 348(5): 335-350.
|
22 |
HUBER A. Numerical modeling of guided waves in anisotropic composites with application to air-coupled ultrasonic inspection[D]. Augsburg: University of Augsburg, 2020: 1-20.
|
23 |
HONGERHOLT D D, Willms G, Rose J L. Summary of results from an ultrasonic in-flight wing ice detection system[C]∥AIP Conference Proceedings. Melville: AIP, 2002: 1023-1028.
|
24 |
MENDIG C, RIEMENSCHNEIDER J, MONNER H P, et al. Ice detection by ultrasonic guided waves[J]. CEAS Aeronautical Journal, 2018, 9(3): 405-415.
|
25 |
SHOJA S, BERBYUK V, BOSTRÖM A. Investigating the Application of Guided Wave Propagation for Ice Detection on Composite Materials[C]∥International Conference on Engineering Vibration. Ljubljana : Faculty for Mechanical Engineering, 2015:152-161.
|
26 |
SHOJA S, BERBYUK V, BOSTRÖM A. Guided wave-based approach for ice detection on wind turbine blades[J]. Wind Engineering, 2018, 42(5): 483-495.
|
27 |
白天. 基于压电材料的结冰探测与除冰方法[D]. 南京: 南京航空航天大学, 2015: 60-85.
|
|
BAI T. Ice detection and deicing method based on piezoelectric materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 60-85. (in Chinese)
|
28 |
赵伟伟. 基于压电材料的飞机结冰探测系统[D]. 南京: 南京航空航天大学, 2018: 51-55.
|
|
ZHAO W W. Aircraft icing detection system based on piezoelectric materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 51-55 (in Chinese).
|
29 |
张鸿健,张晏鑫,熊建军,等. 冰层中Lamb波传播特性的数值模拟和实验研究[J]. 实验流体力学, 2023, 37(2): 68-77.
|
|
ZHANG H J, ZHANG Y X, XIONG J J, et al. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77 (in Chinese).
|
30 |
李远. 压电与铁电材料的测量[M]. 北京: 科学出版社, 1984: 36-40.
|
|
LI Y. Measurement of piezoelectric and ferroelectric materials[M]. Beijing: Science Press, 1984: 36-40 (in Chinese).
|
31 |
HUANG C H, LIN Y C, MA C C. Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(1): 12-24.
|
32 |
宋承天, 蒋志宏, 潘曦, 等. 随机信号分析与估计[M]. 北京: 北京理工大学出版社, 2018: 55-63.
|
|
SONG C T, JIANG Z H, PAN X, et al. Random signals analysis and estimation[M]. Beijing: Beijing Insititute of Technology Press, 2018: 55-63 (in Chinese).
|
33 |
张志政. 基于功率谱密度的旋挖钻机桅杆振动疲劳寿命研究[D]. 西安: 长安大学, 2021: 15-20.
|
|
ZHANG Z Z. Research on vibration fatigue life of rotary drilling rig mast based on power spectrum density[D]. Xi’an: Changan University, 2021: 15-20 (in Chinese).
|
34 |
周海林, 徐毅成, 刘美全, 等. 基于小波变换模极大值法的薄层材料超声测厚研究[J]. 仪表技术, 2010(3): 50-52.
|
|
ZHOU H L, XU Y C, LIU M Q, et al. Thickness measurement on thin layer by ultrasonic based on the wavelet transform modulus maxima[J]. Instrumentation Technology, 2010(3): 50-52 (in Chinese).
|
35 |
关立强, 祝伟光, 李义丰. Lamb波时间反转椭圆定位和层析成像混合技术研究[J]. 南京大学学报(自然科学), 2019, 55(2): 191-201.
|
|
GUAN L Q, ZHU W G, LI Y F. Research on hybrid techniques of Time-reversal Ellipse Location and Tomographic Imaging of Lamb wave[J]. Journal of Nanjing University (Natural Science), 2019, 55(2): 191-201 (in Chinese).
|
36 |
SHEEN B, CHO Y. A study on quantitative lamb wave tomogram via modified RAPID algorithm with shape factor optimization[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(5): 671-677.
|