张超1,2, 曹勇3, 赵振强1,2, 张海洋1,2,4, 孙建波5, 王志华3, 蔚夺魁4()
收稿日期:
2023-02-14
修回日期:
2023-03-07
接受日期:
2023-05-05
出版日期:
2024-01-25
发布日期:
2023-05-18
通讯作者:
蔚夺魁
E-mail:yuduokui@163.com
基金资助:
Chao ZHANG1,2, Yong CAO3, Zhenqiang ZHAO1,2, Haiyang ZHANG1,2,4, Jianbo SUN5, Zhihua WANG3, Duokui YU4()
Received:
2023-02-14
Revised:
2023-03-07
Accepted:
2023-05-05
Online:
2024-01-25
Published:
2023-05-18
Contact:
Duokui YU
E-mail:yuduokui@163.com
Supported by:
摘要:
纤维增强树脂基复合材料对于改善航空发动机推重比、燃油经济性及节能环保具有重要意义。本文介绍了树脂基复合材料在民用航空发动机上的应用情况,总结了航空发动机复合材料风扇机匣和风扇叶片面临的挑战与关键技术问题,包括复杂曲面预制体设计技术、复合材料异形结构高精度制备技术、复合材料结构多尺度建模与精细化仿真以及复合材料机匣的包容性设计准则等。结合目前研究热点展望了可应用于航空发动机复合材料结构研制的新思路和新技术。
中图分类号:
张超, 曹勇, 赵振强, 张海洋, 孙建波, 王志华, 蔚夺魁. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024, 45(2): 28556-028556.
Chao ZHANG, Yong CAO, Zhenqiang ZHAO, Haiyang ZHANG, Jianbo SUN, Zhihua WANG, Duokui YU. Applications and key challenges of polymer composites in civil aero⁃engines: State⁃of⁃art review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 28556-028556.
1 | 《航空发动机设计机手册》总编委会. 航空发动机设计手册 第17册: 载荷及机匣承力件强度分析[M]. 北京: 航空工业出版社, 2001. |
Editor-in-Chief of “Aeroengine Design Manual”. Aeroengine design manual Volume 17: Load and strength analysis of case bearing parts[M]. Beijing: Aviation Industry Press, 2001 (in Chinese). | |
2 | NIU M C Y. Composite airframe structures: Practical design information and data[M]. Hong Kong: Conmilit Press, 1992. |
3 | 胡吉永. 纺织结构成型学2: 多维成形[M]. 上海: 东华大学出版社, 2016. |
HU J Y. Textile structure forming 2: Multidimensional forming[M]. Shanghai: Donghua University Press, 2016 (in Chinese). | |
4 | UPADHYAY R, SINHA S. 3.6 GE-90 and derivative fan blade manufacturing design[M]∥ Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018: 180-188. |
5 | 韦鑫, 荆云娟, 杨明杰, 等. 航空发动机风扇叶片预制体研发现状及趋势[J]. 棉纺织技术, 2020, 48(8): 81-84. |
WEI X, JING Y J, YANG M J, et al. Development status and trend of aeroengine fan blade preform[J]. Cotton Textile Technology, 2020, 48(8): 81-84 (in Chinese). | |
6 | 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35(4): 748-759. |
GUAN L X, LI J L, JIAO Y N, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 748-759 (in Chinese). | |
7 | 籍永青, 徐颖, 游彦宇. 复合材料机匣周向安装边模拟件强度与损伤分析[J]. 航空发动机, 2022, 48(1): 54-60. |
JI Y Q, XU Y, YOU Y Y. Analysis of static strength and damage of circumferential mounting flange simulators in composite casing[J]. Aeroengine, 2022, 48(1): 54-60 (in Chinese). | |
8 | Brasington A, Francis B, Godbold M, et al. A review and framework for modeling methodologies to advance automated fiber placement[J]. Composites Part C: Open Access, 2023, 10: 100347. |
9 | FROMM J. Composite fan blades and enclosures for modern commercial turbo fan engines[EB/OL]. (2016-02-17) [2023-04-10]. . |
10 | GINGER G. Rolls-Royce starts manufacture of world’s largest fan blades, made with composites, for UltraFan demonstrator [EB/OL]. (2020-02-11) [2023-04-10]. . |
11 | 郭军. 纵横双向变厚度三维机织物的研制[D]. 上海: 东华大学, 2016. |
GUO J. Development of 3D woven fabric with gradual thickness change[D]. Shanghai: Donghua University, 2016 (in Chinese). | |
12 | 容治军. 2.5D类缎纹织物增强复合材料疲劳特性研究[D]. 天津: 天津工业大学, 2017. |
RONG Z J. Study on fatigue properties of 2.5D satin fabric reinforced composites[D]. Tianjin: Tianjin Polytechnic University, 2017 (in Chinese). | |
13 | 张瑜, 程博, 张让威, 等. 复合材料机匣整体翻边拼接结构设计与试验验证[J]. 纤维复合材料, 2019, 36(2): 34-38, 48. |
ZHANG Y, CHENG B, ZHANG R W, et al. Structure design and experimental verification of integral flanged composite casing[J]. Fiber Composites, 2019, 36(2): 34-38, 48 (in Chinese). | |
14 | HUANG T, WANG Y L, WANG G. Review of the mechanical properties of a 3D woven composite and its applications[J]. Polymer-Plastics Technology and Engineering, 2018, 57(8): 740-756. |
15 | 孟祥福, 陈美玉, 明璐. RTM工艺参数对复合材料缺陷控制的影响[J]. 热加工工艺, 2018, 47(20): 123-125. |
MENG X F, CHEN M Y, MING L. Influence of RTM process parameters on defects of composites[J]. Hot Working Technology, 2018, 47(20): 123-125 (in Chinese). | |
16 | BROUWER W D, VAN HERPT E C F C, LABORDUS M. Vacuum injection moulding for large structural applications[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(6): 551-558. |
17 | HINDERSMANN A. Confusion about infusion: An overview of infusion processes[J]. Composites Part A: Applied Science and Manufacturing, 2019, 126: 105583. |
18 | HAMIDI Y K, ALTAN M C. Process induced defects in liquid molding processes of composites[J]. International Polymer Processing, 2017, 32(5): 527-544. |
19 | 王雪明, 李韶亮, 谢富原. 热压罐成型复合材料构件曲率半径对制造缺陷的影响规律[J]. 航空材料学报, 2020, 40(6): 90-96. |
WANG X M, LI S L, XIE F Y. Influence of curvature radius on manufacturing defect of composite component formed by autoclave[J]. Journal of Aeronautical Materials, 2020, 40(6): 90-96 (in Chinese). | |
20 | NIELSEN D, PITCHUMANI R. Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(12): 1789-1803. |
21 | SPOERRE J, ZHANG C, WANG B, et al. Integrated product and process design for resin transfer molded parts[J]. Journal of Composite Materials, 1998, 32(13): 1244-1272. |
22 | 冯武. RTM工艺缺陷形成机理与控制方法研究[D]. 武汉: 武汉理工大学, 2005. |
FENG W. Study on the defects formation mechanism and control methods in resin transfer molding[D]. Wuhan: Wuhan University of Technology, 2005 (in Chinese). | |
23 | ZHAO S, RODGERS W R, FRIEBERG B, et al. Study of flow-induced fiber in-plane deformation during high pressure resin transfer molding[J]. Journal of Composite Materials, 2021, 55(15): 2103-2114. |
24 | 刘强, 黄峰, 赵龙, 等. 一种复合材料风扇叶片与金属包边的胶接成型方法: CN113459526B[P]. 2022-06-10. |
LIU Q, HUANG F, ZHAO L, et al. Glue joint forming method for composite material fan blade and metal covered edge: CN113459526B[P]. 2022-06-10 (in Chinese). | |
25 | 高晓进, 周金帅. 复合材料叶片包边粘接超声检测方法[J]. 玻璃钢/复合材料, 2018(8): 102-105. |
GAO X J, ZHOU J S. Ultrasonic testing method for edge bonding of composite blade[J]. Fiber Reinforced Plastics/Composites, 2018(8): 102-105 (in Chinese). | |
26 | 王辉, 黄开, 陈一哲, 等. 一种复合材料叶片金属包边的胶接方法及装置: CN112373052A[P]. 2022-11-29. |
WANG H, HUANG K, CHEN Y Z, et al. Cementing method and device for metal covered edge of composite material blade: CN112373052A[P]. 2022-11-29 (in Chinese). | |
27 | Michael P. Method of bonding a leading edge sheath to a blade body of a fan blade: US8840750B2[P]. 2014-09-23. |
28 | CAO Y, WANG W Z, WANG J P, et al. Experimental and numerical study on tensile failure behavior of bionic suture joints[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92: 40-49. |
29 | WANG W Z, SUN Y P, LU Y Y, et al. Tensile behavior of bio-inspired hierarchical suture joint with uniform fractal interlocking design[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113: 104137. |
30 | MILLER S, HANDSCHUH K M, SINNOTT M, et al. Materials, manufacturing, and test development of a composite fan blade leading edge subcomponent for improved impact resistance: NASA/TM—2015-218340[R]. Washington, D.C.: NASA, 2015. |
31 | 刘洋, 王亮, 郭军. 铝包边对复合材料风扇叶片抗鸟撞能力的影响[J]. 兵工学报, 2018, 39(): 114-120. |
LIU Y, WANG L, GUO J. Infuence of aluminum package edge on bird-stike resistance of composite fan blades of an engine[J]. Acta Armamentarii, 2018, 39(S1): 114-120 (in Chinese). | |
32 | PRAVEEN S D, TEJAS K S. Impact simulation: comparison of composite jet engine fan blade with and without leading edge reinforcement[J]. International Research Journal of Engineering and Technology, 2021, 8(8): 1472-1478. |
33 | SIDDENS A, BAYANDOR J. Multidisciplinary impact damage prognosis methodology for hybrid structural propulsion systems[J]. Computers & Structures, 2013, 122: 178-191. |
34 | 李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8): 2620-2650. |
LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2620-2650 (in Chinese). | |
35 | 吕青泉. 2.5D机织复合材料的动态试验与仿真模拟研究[D]. 西安: 西北工业大学, 2021. |
LV Q Q. Dynamic experiment and numerical simulation study of 2.5D woven composites[J]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese). | |
36 | HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105481. |
37 | LOMOV S V, HUYSMANS G, LUO Y, et al. Textile composites: Modelling strategies[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(10): 1379-1394. |
38 | XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266-278. |
39 | 路怀玉. 2.5维编织复合材料的强度研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
LU H Y. Strength research of 2.5D braided composites[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). | |
40 | ZHONG S Y, GUO L C, LIU G, et al. A continuum damage model for three-dimensional woven composites and finite element implementation[J]. Composite Structures, 2015, 128: 1-9. |
41 | 胡燕琪. 高速冲击下三维机织复合材料宏细观建模方法研究[D]. 杭州: 浙江大学, 2021. |
HU Y Q. Study on macro-meso modeling method of 3D woven composites under high speed impact[D]. Hangzhou: Zhejiang University, 2021 (in Chinese). | |
42 | ZHAO Z Q, DANG H Y, ZHANG C, et al. A multi-scale modeling framework for impact damage simulation of triaxially braided composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 113-125. |
43 | SHOKRIEH M M, MOSALMANI R, OMIDI M J. Strain-rate dependent micromechanical method to investigate the strength properties of glass/epoxy composites[J]. Composite Structures, 2014, 111: 232-239. |
44 | YOU H E, YUM Y J. Loading rate effect on mode I interlaminar fracture of carbon/epoxy composite[J]. Journal of Reinforced Plastics and Composites, 1997, 16(6): 537-549. |
45 | SUN C T, HAN C. A method for testing interlaminar dynamic fracture toughness of polymeric composites[J]. Composites Part B: Engineering, 2004, 35(6-8): 647-655. |
46 | CAO J C, MENG X H, GU J H, et al. Temperature-dependent interlaminar behavior of unidirectional composite laminates: Property determination and mechanism analysis[J]. Polymer Composites, 2021, 42(8): 3746-3757. |
47 | ARMENÀKAS A E, SCIAMMARELLA C A. Response of glass-fiber-reinforced epoxy specimens to high rates of tensile loading[J]. Experimental Mechanics, 1973, 13(10): 433-440. |
48 | WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1251-1257. |
49 | ZHOU Y X, XIA Y M. In situ strength distribution of carbon fibers in unidirectional metal-matrix composites-wires[J]. Composites Science and Technology, 2001, 61(14): 2017-2023. |
50 | RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2002, 42(1): 58-64. |
51 | 王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展[J]. 力学进展, 2021, 51(4): 729-754. |
WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar[J]. Advances in Mechanics, 2021, 51(4): 729-754 (in Chinese). | |
52 | LI S G, XU M M, SITNIKOVA E. The formulation of the quadratic failure criterion for transversely isotropic materials: Mathematical and logical considerations[J]. Journal of Composites Science, 2022, 6(3): 82. |
53 | LI S G, SITNIKOVA E. A critical review on the rationality of popular failure criteria for composites[J]. Composites Communications, 2018, 8: 7-13. |
54 | LI X, MA D Y, LIU H F, et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 207: 727-739. |
55 | 唐旭, 张煜坤, 陈勇. 复合材料风扇叶片高周疲劳薄弱点位置预测[J]. 航空动力学报, 2021, 36(3): 498-508. |
TANG X, ZHANG Y K, CHEN Y. Prediction of composite fan blade high cycle fatigue weak-link point location[J]. Journal of Aerospace Power, 2021, 36(3): 498-508 (in Chinese). | |
56 | LIU X D, ZHANG D T, MAO C J, et al. Full-field progressive fatigue damage of 3D5D braided composites with yarn-reduction: Visualization, classification, and quantification[J]. Composites Science and Technology, 2022, 218: 109214. |
57 | SONG J, WEN W D, CUI H T. Fatigue behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures, 2017, 166: 77-86. |
58 | RAFIEE R, ABBASI F, MALEKI S. Fatigue analysis of a composite ring: Experimental and theoretical investigations[J]. Journal of Composite Materials, 2020, 54(26): 4011-4024. |
59 | 翁晶萌. 复合材料多轴疲劳行为与寿命预测模型及方法研究[D]. 南京: 南京航空航天大学, 2019. |
WENG J M. Multiaxial mechanical behavior and fatigue life prediction of composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
60 | Federal Aviation Administration. Special conditions: General electric (GE) aircraft engines model(s) GE90-75B/-85B/-76B turbofan engines: [S]. Washington, D.C.: Federal Aviation Administration, 1995. |
61 | Federal Aviation Administration. Special conditions: General electric company GEnx model turbofan engines: [S]. Washington, D.C.: Federal Aviation Administration, 2009. |
62 | 张科伟. 复合材料/钛合金板冲击损伤分析与评估方法研究[D]. 南京: 南京航空航天大学, 2011. |
ZHANG K W. Research and assessment method on the impact resistance of titanium and composite plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese). | |
63 | 李建华, 刘杰. WJ9发动机涡轮转子叶片包容性研究: CASS 2000-PH-011[R]. 北京: 中国航空学会, 2000. |
LI J H, LIU J. Research on inclusion of WJ9 engine turbine rotor blades: CASS 2000-PH-011[R]. Beijing: Chinese Society of Aeronautics and Astronautics, 2000 (in Chinese). | |
64 | 范志强. 航空发动机机匣包容性理论和试验研究[D]. 南京: 南京航空航天大学, 2006. |
FAN Z Q. Theory and experimental study on aeroengine casing containment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). | |
65 | 谢文涛. 航空发动机动力涡轮包容设计与验证技术研究[D]. 上海: 上海交通大学, 2017. |
XIE W T. Containment design and verification technology research on powerturbine of aeroengine[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese). | |
66 | 孔維夷, 徐焱, 張璇, 等. 复合材料风扇包容机匣关键性能提升[J]. 航空动力, 2022(1): 52-54. |
KONG W Y, XU Y, ZHANG X, et al. Key performance improvement of composite fan containment case[J]. Aerospace Power, 2022(1): 52-54 (in Chinese). | |
67 | 宋曼丽. 三维编织/机织复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2020. |
SONG M L. Research on the containment of 3D braided/woven composite casing[D]. Hangzhou: Zhejiang University, 2020 (in Chinese). | |
68 | 赵振强. 二维三轴编织复合材料的动态力学行为与失效机理[D]. 西安: 西北工业大学, 2019. |
ZHAO Z Q. Dynamic mechanical behavior and failure mechanism of two-dimensional triaxially braided composites[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese). | |
69 | 顾善群, 张代军, 刘燕峰, 等. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(1): 119-125. |
GU S Q, ZHANG D J, LIU Y F, et al. Anti-high speed impact properties of polyimide fiber/bismaleimide resin composites[J]. Journal of Materials Engineering, 2021, 49(1): 119-125 (in Chinese). | |
70 | 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948. |
CAO J C, SUN J B, CAO Y, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4935-4948 (in Chinese). | |
71 | 谢克富. 轻质抗高速冲击凯夫拉/聚乙烯纤维混杂复合材料研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
XIE K F. Research on lightweight high speed impact kevlar/polyethylene fiber hybrid composites[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). | |
72 | 张辰. 碳/玻单向经编混杂复合材料抗冲击性能及损伤机理研究[D]. 上海: 东华大学, 2021. |
ZHANG C. Study on impact resistance properties and damage mechanism of carbon/glass unidirectional warp knitted hybrid composites[D]. Shanghai: Donghua University, 2021 (in Chinese). | |
73 | 唐梦云. 碳-芳纶混杂二维编织复合材料冲击性能实验研究[D]. 天津: 天津工业大学, 2017. |
TANG M Y. Experimental study on impact properties of carbon-aramid hybrid two-dimensional braided composites[D].Tianjin: Tianjin Polytechnic University, 2017 (in Chinese). | |
74 | STEPHEN C, SHIVAMURTHY B, MOURAD A H I, et al. Experimental and finite element study on high-velocity impact resistance and energy absorption of hybrid and non-hybrid fabric reinforced polymer composites[J]. Journal of Materials Research and Technology, 2022, 18: 5406-5418. |
75 | 曹勇, 张超. 薄层复合材料冲击损伤行为研究进展[J]. 航空学报, 2022, 43(6): 525323. |
CAO Y, ZHANG C. Impact damage behavior of thin-ply composites: A review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525323 (in Chinese). | |
76 | HIMANEN L, GEURTS A, FOSTER A S, et al. Data-driven materials science: Status, challenges, and perspectives[J]. Advanced Science, 2019, 6(21): 1900808. |
77 | 杨航, 李丽坤, 刘道平, 等. 数据驱动梯度结构材料弹塑性本构[J]. 固体力学学报, 2021, 42(3): 233-240. |
YANG H, LI L K, LIU D P, et al. Data-driven elastoplastic constitutive model for gradient structure materials[J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 233-240 (in Chinese). | |
78 | LI X, ZHANG C, WU Z. An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials[J]. Structural Engineering and Mechanics, 2021, 80(5): 539-551. |
79 | KIRCHDOERFER T, ORTIZ M. Data-driven computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 81-101. |
80 | KIRCHDOERFER T, ORTIZ M. Data driven computing with noisy material data sets[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 622-641. |
81 | KIRCHDOERFER T, ORTIZ M. Data-driven computing in dynamics[J]. International Journal for Numerical Methods in Engineering, 2018, 113(11): 1697-1710. |
82 | BARBOSA A, UPADHYAYA P, IYPE E. Neural network for mechanical property estimation of multilayered laminate composite[J]. Materials Today: Proceedings, 2020, 28: 982-985. |
83 | ARTERO-GUERRERO J A, PERNAS-SÁNCHEZ J, MARTÍN-MONTAL J, et al. The influence of laminate stacking sequence on ballistic limit using a combined experimental/FEM/artificial neural networks (ANN) methodology[J]. Composite Structures, 2018, 183: 299-308. |
84 | TAO C C, ZHANG C, JI H L, et al. Application of neural network to model stiffness degradation for composite laminates under cyclic loadings[J]. Composites Science and Technology, 2021, 203: 108573. |
[1] | 尹泽勇, 李概奇, 石建成, 银越千. 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024, 45(7): 29713-029713. |
[2] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
[3] | 齐国宁, 吴宝海, 符江锋. 高速高压燃油齿轮泵典型卸荷槽对比分析[J]. 航空学报, 2024, 45(5): 529666-529666. |
[4] | 曹志鹏, 王永明, 赵龙波, 关朝斌, 牛潇, 陈晨. 复合掠弯轴流增压设计技术[J]. 航空学报, 2024, 45(5): 529676-529676. |
[5] | 马瑞贤, 王鑫, 王开明, 李斌, 廖明夫, 王四季. 航空发动机篦齿⁃橡胶涂层机匣碰摩实验[J]. 航空学报, 2024, 45(4): 628350-628350. |
[6] | 吴志渊, 赵林川, 颜格, 胡海峰, 杨志勃, 张文明. 转轴-轮盘-裂纹叶片耦合系统的叶尖振动特性[J]. 航空学报, 2024, 45(4): 628346-628346. |
[7] | 胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194. |
[8] | 陈立芳, 孙亚冰, 周书华, 高强, 乔保栋, 李栋. 基于真实数据反演的风扇转子本机平衡方法[J]. 航空学报, 2024, 45(4): 628321-628321. |
[9] | 肖袁, 冯坤, 胡明辉, 江志农. 航空发动机转子非稳态振动分量提取方法[J]. 航空学报, 2024, 45(3): 228158-228158. |
[10] | 李天晴, 王维民, 张旭龙, 王树慧, 付振宇. 基于叶尖定时的转子叶片轴向位移辨识方法[J]. 航空学报, 2024, 45(2): 228682-228682. |
[11] | 胡应交, 徐峰, 杨志军. 航空发动机整机防结冰试验能力综述[J]. 航空学报, 2023, 44(S2): 729449-729449. |
[12] | 韩剑, 孙士勇, 牛斌, 杨睿, 吴东江. 树脂基复合材料点阵结构的制造技术研究进展[J]. 航空学报, 2023, 44(9): 628255-628255. |
[13] | 郑新前, 王钧莹, 黄维娜, 伏宇, 程荣辉, 熊洪洋. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 27099-027099. |
[14] | 万能, 庄其鑫, 郭彦亨, 常智勇, 王道. 拟合精度约束下航发叶片在机测量采样策略[J]. 航空学报, 2023, 44(7): 427151-427151. |
[15] | 张旭龙, 王维民, 李天晴, 林昱隆, 艾信息, 王振国. 变转速工况下叶尖计时信号趋势项解析及验证[J]. 航空学报, 2023, 44(5): 426980-426980. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学