[1] Tian W S, Yue D Q. A study of pure iron machinability [J]. Journal of Taiyuan Heavy Machinery Institute, 1990, 11(2): 17-24. (in Chinese) 田文生, 乐兑谦. 纯铁的切削性能研究[J]. 太原重型机械学院学报, 1990, 11(2): 17-24.[2] Liu J J. Relation between the carbon content and the magnetic property for electric pure iron[J]. Aero Weaponry, 2002 (2): 47-49. (in Chinese) 刘俊杰. 电工纯铁含碳量与磁性能的关系[J]. 航空兵器,2002 (2): 47-49.[3] Bao W P, Zhao Y Z, Li C M, et al. Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates[J]. Journal of Mechanical Engineering, 2010, 46(4): 74-79. (in Chinese) 包卫平, 赵昱臻, 李春明, 等. 纯铁高温高应变率下的动态本构关系试验研究[J]. 机械工程学报, 2010, 46(4): 74-79.[4] Bao W P, Ren X P, Jin H Q. Dynamic stress-strain behavior of pure iron for shaped charge liners[J]. Journal of University of Science and Technology Beijing, 2009, 31(8): 978-982. (in Chinese) 包卫平, 任学平, 金宏全. 纯铁药型罩材料的动态应力-应变行为[J]. 北京科技大学学报, 2009, 31(8): 978-982.[5] Chen Y T, Tang X J, Li Q Z. Shock-induced phase transition and spalling characteristic in pure iron and FeMnNi alloy[J]. Chinese Physics B, 2010, 19(5): 056402.[6] Guo W G, Liu F L, Su J. A review of plastic flow characteristic and constitutive mode of several typical BCC metals [J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 143-149. (in Chinese) 郭伟国, 刘风亮, 苏静. 几种典型BCC金属的塑性流动特性[J]. 航空工程进展, 2010, 1(2): 143-149.[7] Guo W G, Nemat-Nasser S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(11): 1090-1103.[8] Yin W, Zheng H F. On dynamic strengthening mechanism of metallic material[J]. Part A: Physical Testing, 2002, 38(3): 99-100. (in Chinese) 殷雯, 郑鸿飞. 金属材料动态强化机制的探讨[J]. 理化检验-物理分册, 2002, 38(3): 99-100.[9] Yang Z Y, Ding Y L, Chen J Y. Investigation on shock wave plasticization effect of iron[J]. Ordnance Material Science and Engineering, 2002, 25(6): 15-17. (in Chinese) 杨卓越, 丁雅莉, 陈嘉砚. 工业纯铁爆炸冲击波增塑效应研究[J]. 兵器材料科学与工程, 2002, 25(6): 15-17.[10] Lin Z, Wang Y L, Lin J P, et al. Dynamic restoration mechanism during hot compression of high purity α-Fe [J]. Journal of Aeronautical Materials, 2003, 23(3): 23-26. (in Chinese) 林志, 王艳丽, 林均品, 等. 高纯α-Fe热压缩动态复原机制的研究[J]. 航空材料学报, 2003, 23(3): 23-26.[11] Li Y L, Suo T, Guo W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J]. Explosion and Shock Waves, 2005, 25(6): 487-492. (in Chinese) 李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统[J]. 爆炸与冲击, 2005, 25(6): 487-492.[12] Meyers M A. Dynamic behavior of materials[M]. Zhang Qingming, Liu Yan, Huang Fenglei, et al, translated. Beijing: National Defence Industry Press, 2006: 225-260. (in Chinese) Meyers M A. 材料的动力学行为[M]. 张庆明, 刘彦, 黄风雷, 等, 译. 北京: 国防工业出版社, 2006: 225-260.[13] Song W X. Physical metallurgy[M]. Beijing: Metallurgical Industry Press, 1989: 184-214. (in Chinese) 宋维锡. 金属学[M]. 北京: 冶金工业出版社, 1989: 184-214.[14] Voronova L M, Degtyarev M V, Chashehukhina T I. Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening[J]. The Physics of Metals and Metallography, 2007, 104(3): 262-273.[15] Liu B S, Lang L H, Yang X Y, et al. A rate dependent constitutive model based on microstructure evolution[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1329-1335. (in Chinese) 刘宝胜, 朗利辉, 杨希英, 等. 一种基于微观组织演化的率形式本构模型[J]. 航空学报, 2012, 33(7): 1329-1335.[16] Zerilli F J, Armstrong R W. Dislocation mechanics based constitutive relations for material dynamics calculation [J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.[17] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures//Processing of the Seventh International Symposium on Ballistics, 1983: 541-547.[18] AdvantEdge T W. 2D user's manual[M]. 2011: 191-195.[19] Jiang F, Li J F, Sun J, et al. Al7050-T7451 turning simulation based on the modified power-law material model [J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(9-12): 871-880. |