1 |
崔岩, 史文方. SiCp/Al复合材料界面控制与评价新方法[J]. 航空学报, 2000, 21(6): 571-574.
|
|
CUI Y, SHI W F. New method to control and evaluate the interface of SiCp/Al composites[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(6): 571-574 (in Chinese).
|
2 |
詹美燕, 傅定发, 吴有伍, 等. SiC颗粒尺寸对喷射共沉积7075 Al/SiCp挤压及轧制的组织和性能的影响[J]. 精密成形工程, 2004, 22(1): 49-53.
|
|
ZHAN M Y, FU D F, WU Y W, et al. The effects of particle sizes on microstructure and mechanical properties of Co-sprayed 7075Al/SiCp/15 mass% composite[J]. Metal Forming Technology, 2004, 22(1): 49-53 (in Chinese).
|
3 |
聂俊辉, 樊建中, 魏少华, 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用[J]. 航空制造技术, 2017, 60(16):26-36.
|
|
NIE J H, FAN J Z, WEI S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation[J]. Aeronautical Manufacturing Technology, 2017, 60(16): 26-36 (in Chinese).
|
4 |
MHASKE M S, SHIRSAT U M. An investigation of mechanical properties of aluminium based silicon carbide (AlSiC) metal matrix composite by different manufacturing methods[J]. Materials Today: Proceedings, 2021, 44: 376-382.
|
5 |
REDDY B R, SRINIVAS C. Fabrication and characterization of silicon carbide and fly ash reinforced aluminium metal matrix hybrid composites[J]. Materials Today: Proceedings, 2018, 5(2): 8374-8381.
|
6 |
周艳华. 碳化硅颗粒增强铝基复合材料主要制备技术[J]. 工具技术, 2017, 51(4):7-10.
|
|
ZHOU Y H. Main preparation processes and research status of SiC particle reinforced aluminum matrix composites[J]. Tool Engineering, 2017, 51(4): 7-10 (in Chinese).
|
7 |
林师朋, 刘金炎, 纪艳丽. 铝基复合材料的增强体研究及发展现状[J]. 有色金属加工, 2016, 45(6): 6-11.
|
|
LIN S P, LIU J Y, JI Y L. Study and development of reinforcement in aluminum matrix composites[J]. Nonferrous Metals Processing, 2016, 45(6): 6-11 (in Chinese).
|
8 |
JIANG X D, XIAO D H, TENG X Y. Influence of vibration parameters on ultrasonic vibration cutting micro-particles reinforced SiC/Al metal matrix composites[J].The International Journal of Advanced Manufacturing Technology, 2022, 119(9-10): 6057-6071.
|
9 |
胡代忠, 陈礼清, 赵明久, 等. SiC颗粒增强铝基复合材料薄板的力学性能[J]. 中国有色金属学报, 2000, 10(6):827-831.
|
|
HU D Z, CHEN L Q, ZHAO M J, et al. Mechanical properties of SiC particle reinforced aluminum matrix composite sheet[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 827-831 (in Chinese).
|
10 |
毕敬, 肖伯律, 马宗义. SiCp/2024铝基复合材料的超塑性变形行为研究[J]. 金属学报, 2002, 38(6): 621-624.
|
|
BI J, XIAO B L, MA Z Y. High strain rate superplastic deformation behavior of powder-metallurgy processed 17% SiCp/2024 Al composite[J]. Acta Metallurgica Sinica, 2002, 38(6): 621-624 (in Chinese).
|
11 |
MAJI P, NATH R K, KARMAKAR R, et al. Effect of post processing heat treatment on friction stir welded/processed aluminum based alloys and composites[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 96-105.
|
12 |
MOHAMADIGANGARAJ J, NOUROUZI S, JAMSHIDI AVAL H. The effect of heat treatment and cooling conditions on friction stir processing of A390-10wt% SiC aluminium matrix composite[J]. Materials Chemistry and Physics, 2021, 263: 124423.
|
13 |
WANG B, HUANG L J, GENG L, et al. Effects of heat treatments on microstructure and tensile properties of as-extruded TiBw/near-α Ti composites[J]. Materials and Design, 2015, 85: 679-686.
|
14 |
ZHANG W, ZHAO W S, LI D X, et al. Novel combinatorial microstructures in Ti-6Al-4V alloy achieved byan electric-current-pulse treatment[J]. International Journal of Materials Research, 2006, 97(8): 1143-1151.
|
15 |
XIE L C, WU Y Y, YAO Y P, et al. Refinement of TiB reinforcements in TiB/Ti-2Al-6Sn titanium matrix composite via electroshock treatment[J]. Materials Characterization, 2021, 180: 111395.
|
16 |
XIE L C, LIU C, SONG Y L, et al. Evaluation of microstructure variation of TC11 alloy after electroshocking treatment[J]. Journal of Materials Research and Technology, 2020, 9(2): 2455-2466.
|
17 |
刘斌, 高一迪, 谭志勇, 等. 二维叠层C/SiC复合材料低能量冲击损伤实验[J]. 航空学报, 2021, 42(2): 110-120.
|
|
LIU B, GAO Y D, TAN Z Y, et al. Low energy level impact damage on 2D C/SiC composites: Experimental study[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 110-120 (in Chinese).
|
18 |
WEI S P, WANG G, DENG D W, et al. Microstructure characterization and thermal behavior around crack tip under electropulsing[J].Applied Physics:A, 2015, 121(1): 69-76.
|
19 |
RUDOLF C, GOSWAMI R, KANG W, et al. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium[J]. Acta Materialia, 2021, 209: 116776.
|
20 |
JEONG K, JIN S W, KANG S G, et al. Athermally enhanced recrystallization kinetics of ultra-low carbon steel via electric current treatment[J]. Acta Materialia, 2022, 232: 117925.
|
21 |
MILOSLAV K, MARTIN T, ALES R. Skin-effect in conductor of rectangular cross-section—Approximate solution[J]. Przeglad Elektrotechniczny, 2012, 88(7): 23-25.
|
22 |
LIU L P, ZHAO Z J, ZHANG J C, et al. Giant magneto-impedance and skin effect in CuBe/CoNiP composite wires[J]. Journal of Magnetism and Magnetic Materials, 2006, 305(1): 212-215.
|
23 |
WANG Z J, SONG H, CAI S P, DUAN J, REN X W. Research advancements on self-healing of cracks and evolution of microstructures of titanium alloy sheets induced by electropulsing[J]. Journal of Plasticity Engineering, 2019, 26(2): 1-14.
|
24 |
ZHOU Y Z, GUO J D, GAO M, et al. Crack healing in a steel by using electropulsing technique[J]. Materials Letters, 2004, 58(11): 1732-1736.
|
25 |
QIN R S, SU S X. Thermodynamics of crack healing under electropulsing[J].Journal of Materials Research, 2002, 17(8): 2048-2052.
|
26 |
SONG H, WANG Z J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science and Engineering: A, 2008, 490(1-2): 1-6.
|
27 |
易卓勋, 赖小明, 王博, 等. 高密度脉冲电流对SiCp/Al板材裂纹的修复作用[J]. 航空学报, 2017, 38(11): 206-213.
|
|
YI Z X, LAI X M, WANG B, et al. Effect of high density pulse current on healing of cracks of SiCp/Al composites[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 206-213 (in Chinese).
|
28 |
王博. 脉冲电流对铝基复合材料拉深变形与扩散连接的影响[D]. 哈尔滨: 哈尔滨工业大学, 2013: 68-70.
|
|
WANG B. Effect of pulse current on drawing deformation and diffusion bonding of aluminum matrix composites[D]. Harbin: Harbin Institute of Technology, 2013: 68-70 (in Chinese).
|
29 |
MECKLENBURG M, ZUTTER B T, LING X Y, et al. Visualizing the electron wind force in the elastic regime[J]. Nano Letters, 2021, 21(24): 10172-10177.
|
30 |
LI X, ZHU Q, HONG Y R, et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force[J]. Nature Communications, 2022, 13(1): 1-9.
|
31 |
邹磊, 武颖, 岑启宏. 电脉冲处理对W6Mo5Cr4V2高速钢的影响[J]. 材料工程, 2016, 44(2): 23-27.
|
|
ZOU L, WU Y, CEN Q H. Influence of electric current pulse treatment on W6Mo5Cr4V2 high speed steel[J]. Journal of Materials Engineering, 2016, 44(2):23-27 (in Chinese).
|
32 |
LIU R F, WANG W X, CHEN H S, et al. Comparative study of recrystallization behaviour and nanoindentation properties of micro-/ nano-bimodal size B4C particle-reinforced aluminium matrix composites under T6 and electropulsing treatment[J]. Journal of Alloys and Compounds, 2019, 788: 1056-1065.
|