1 |
WALLS J H. In-flight structural response of the model A4D-1 aircraft to a nuclear explosion: WT-1433[R]. St.Louis: Douglas Aircraft Company, 1958.
|
2 |
WILLIAMS F L. In-flight participation of a B-52: WT-1328[R]. Chicago: Boeing Airplane Company, 1959.
|
3 |
WU Z, CAO Y, ISMAIL M. Gust loads on aircraft[J]. The Aeronautical Journal, 2019, 123(1266): 1216-1274.
|
4 |
杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 527350.
|
|
YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527350 (in Chinese).
|
5 |
MILLER G C, SCHLEI E J, ANDREWS C R. Blast and thermal effects on B-36 aircraft in flight: AD-338333 [R]. Montgometry: Wright Air Development Center, 1956.
|
6 |
LEE W N, MENTE L. NOVA-2: A digital computer program for analyzing nuclear overpressure effects on aircraft: AFWL-TR-75-262[R]. Albuquerque: Kirland Air Force Base, 1976.
|
7 |
ECKBLAD D M, FUNSTON N E. Simulated nuclear gust testing of major airplane structural components: DNA 4243F[R]. Chicago: Boeing Airplane Company, 1977.
|
8 |
O.A. 库兹涅佐夫. 飞机动载荷[M]. 唐长红, 张建叶, 刘天兴, 等, 译. 北京: 航空工业出版社, 2017: 76-79.
|
|
КУЗНЕЦОВ О А. Aircraft dynamic loads[M]. TANG C H, ZHANG J Y, LIU T X, et al, translated. Beijing: Aviation Industry Press, 2017: 76-79 (in Chinese).
|
9 |
朱立海. 飞机在冲击波作用下飞机迎角、法向过载安全边界的确定[R]. 北京: 空军第一研究所, 1981.
|
|
ZHU L H. The safety margin determination of angle of attack and normal load factor of the aircraft in the blast wave[R]. Beijing: Air Force The First Research Institute, 1981 (in Chinese).
|
10 |
中国飞行试验研究院. 军用飞机强度和刚度规范核武器效应使用说明 [S]. 西安: 中国飞行试验研究院, 1986: 19-21.
|
|
Chinese Flight Test Establishment. Nuclear weapons effects usage instruction of the military airplane strength and rigidity specification [S]. Xi’an: Chinese Flight Test Establishment, 1986: 19-21 (in Chinese).
|
11 |
张森林. 在核爆炸冲击波环境中飞行飞机的结构动力响应分析[J]. 航空学报, 1992, 13(9): 510-515.
|
|
ZHANG S L. Analysis of structural dynamic response for aircraft operating in the environment of nuclear explosion shock waves[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(9): 510-515 (in Chinese).
|
12 |
绪梅, 李笑天, 王良厚, 等. 核爆冲击波作用下结构的动力学响应[M]∥核动力工程.北京: 原子能出版社, 2002: 95-97.
|
|
XU M, LI X T, WANG L H, et al. Dynamic response ofthe structure under nuclear blast[M]∥Nuclear power engineering. Beijing: Atomic Energy Press, 2002: 95-97 (in Chinese).
|
13 |
WANG C. Dynamic response analysis of a warship subjected to underwater explosion shock waves[J]. Journal of Ship Mechanics, 2010, 14(12): 1405-1414.
|
14 |
DRISCHLER J A, DIEDERICH F. Lift and moment responses to penetration of sharp-edged traveling gusts, with application to penetration of weak blast waves: NACA TN 3956[R]. Washington, D.C.: NACA, 1957.
|
15 |
CHAO D C, LAN C E. Calculation of wing response to guests and blast waves with vortex lift effect: NASA-CR-172232[R]. Washington, D.C.: NASA, 1983.
|
16 |
温功碧, 孙忠恕. 在运动突风作用下亚声速机翼非定常气动力数值计算[J]. 空气动力学学报, 1981(1): 44-52.
|
|
WEN G B, SUN Z S. The unsteady aerodynamic numerical calculation of subsonic wing under the effect of travelling gust[J]. Acta Aerodynamica Sinica, 1981(1): 44-52 (in Chinese).
|
17 |
温功碧, 孙忠恕. 运动突风作用下机翼-机身-尾翼亚音速非定常气动力数值计算[J]. 航空学报, 1981, 2(3): 23-30.
|
|
WEN G B, SUN Z S. Numerical computation of unsteady subsonic aerodynamic forces on wing-body-tail exposed to travelling gust[J]. Acta Aeronautica et Astronautica Sinica, 1981, 2(3): 23-30 (in Chinese).
|
18 |
LEISHMAN J G. Unsteady aerodynamics of airfoils encountering traveling gusts and vortices[J]. Journal of Aircraft, 1997, 34(6): 719-729.
|
19 |
荆志伟, 唐长红. 运动突风中的飞机动响应建模及仿真[J]. 飞行力学, 2021, 39(3): 8-13.
|
|
JING Z W, TANG C H. Dynamic response modeling and simulation of aircraft in the travelling gust[J]. Flight Dynamics, 2021, 39(3): 8-13 (in Chinese).
|
20 |
JING Z W, TANG C H. Modeling technique of the air-craft unsteady aerodynamics due to the travelling gust[J]. International Journal of Plant Engineering and Management, 2022, 27(2): 86-102.
|
21 |
VIVIAN H T, ANDREW L. Unsteady aerodynamics for advanced configurations. Part I. Application of the subsonic kernel function to nonplanar lifting surfaces: FDL-TDR-64-152[R]. Montgometry: Wright-Patterson Air Force Base, 1965.
|
22 |
LANDAHL M T. Kernel function for nonplanar oscillating surfaces in a subsonic flow[J]. AIAA Journal, 1967, 5(5): 1045-1046.
|
23 |
TECHNOLOGYEDITOR Z. ZAERO theoretical manual[M]. Version 8.2. Scottsdale: ZONA Technology, 2008.
|
24 |
WU Z G, YANG C. Flight loads and dynamics of flexible air vehicles[J]. Chinese Journal of Aeronautics, 2004, 17(1): 17-22.
|
25 |
王立波, 唐矗, 杨超. 大展弦比飞翼刚弹耦合运动稳定性分析[J]. 西北工业大学学报, 2017, 35(6): 1096-1104.
|
|
WANG L B, TANG C, YANG C. Dynamic stability analysis of a flying wing considering the rigid-elastic coupling effects[J]. Journal of Northwestern Polytechnical University, 2017, 35(6): 1096-1104 (in Chinese).
|
26 |
TIFFANY S, KARPEL M. Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics[C]∥ Proceedings of the 30th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1989.
|
27 |
吴志刚. 飞行器气动伺服弹性的建模、分析与综合研究[D]. 北京: 北京航空航天大学, 2004: 24-26.
|
|
WU Z G. Studies on aeroservoelastic modeling, analysis and synthesis of flight vehicles [D]. Beijing: Beihang University, 2004: 24-26 (in Chinese).
|