[1] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4. LU B H, LI D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4):1-4(in Chinese). [2] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials'fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). [3] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5):32-55. GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5):32-55(in Chinese). [4] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9):1111-1126. LIN X, HUANG W D. Laser additive manufacturing of high-performance metal components[J]. Science China:Information Science, 2015, 45(9):1111-1126(in Chi- nese). [5] 杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1):9-21. YANG Y Q, CHEN J, SONG C H, et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1):9-21(in Chinese). [6] 曹龙超, 周奇, 韩远飞, 等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021,42(10):524790. CAO L C, ZHOU Q, HAN Y F, et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(10):524790(in Chinese). [7] 郭鑫鑫, 陈哲涵. 激光增材制造过程数值仿真技术综述[J]. 航空学报, 2021,42(10):524227. GUO X X, CHEN Z H. Numerical simulation of laser additive manufacturing process:A review[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(10):524227(in Chinese). [8] 顾冬冬, 张晗, 刘刚, 等. 稀土改性高强铝微桁架激光增材制造工艺调控[J]. 航空学报, 2021,42(10):524868. GU D D, ZHANG H, LIU G, et al. Process optimization of additive manufactured sandwich panel structure using rare earth element modified high-performance Al alloy[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(10):524868(in Chinese). [9] 张国庆, 杨永强, 张自勉, 等. 激光选区熔化成型零件支撑结构优化设计[J]. 中国激光, 2016, 43(12):59-66. ZHANG G Q, YANG Y Q, ZHANG Z M, et al. Optimal design of support structures in selective laser melting of parts[J]. Chinese Journal of Lasers, 2016, 43(12):59-66(in Chinese). [10] YANG J K, GU D D, LIN K J, et al. Laser 3D printed bio-inspired impact resistant structure:failure mechanism under compressive loading[J]. Virtual and Physical Prototyping, 2020, 15(1):75-86. [11] LI Y X, GU D D, ZHANG H, et al. Effect of trace addition of ceramic on microstructure development and mechanical properties of selective laser melted AlSi10Mg alloy[J]. Chinese Journal of Mechanical Engineering, 2020, 33(2):33. [12] GU D D, ZHANG H M, DAI D H, et al. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance[J]. Composites Part B:Engineering, 2019, 163:585-597. [13] ZHANG K F, FU G, ZHANG P, et al. Study on the geometric design of supports for overhanging structures fabricated by selective laser melting[J]. Materials, 2019, 12:27. [14] BOBBIO L D, QIN S, DUNBAR A, et al. Characterization of the strength of support structures used in powder bed fusion additive manufacturing of Ti-6Al-4V[J]. Additive Manufacturing, 2017, 14:60-68. [15] PAL S, LOJEN G, KOKOL V, et al. Reducing porosity at the starting layers above supporting bars of the parts made by selective laser melting[J]. Powder Technology, 2019, 355:268-277. [16] LEARY M, MACONACHIE T, SARKER A, et al. Mechanical and thermal characterisation of AlSi10Mg SLM block support structures[J]. Materials and Design, 2019, 183:108138. [17] PAULY S, WANG P, KUHN U, et al. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu[J]. Additive Manufacturing, 2018, 22:753-757. [18] GAN M X, WONG C H. Practical support structures for selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238:474-484. [19] 洪军, 李涤尘, 唐一平, 等. 快速成型中的支撑结构设计策略研究[J]. 西安交通大学学报, 2000, 34(9):58-61. HONG J, LI D C, TANG Y P, et al. Design of RP support structure[J]. Journal of Xi'an Jiaotong University, 2000, 34(9):58-61(in Chinese). [20] CAO Q Q, BAI Y C, ZHANG J, et al. Removability of 316L stainless steel cone and block support structures fabricated by Selective Laser Melting (SLM)[J]. Materials and Design, 2020, 191:108691. [21] LIN K J, YUAN L H, GU D D. Influence of laser parameters and complex structural features on the bio-inspired complex thin-wall structures fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 2019, 267:34-43. [22] DAI D H, GU D D, GE Q, et al. Mesoscopic study of thermal behavior, fluid dynamics and surface morphology during selective laser melting of Ti-based composites[J]. Computational Materials Science, 2020, 177:109598. [23] YANG Y, GU D D, DAI D H, et al. Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy[J]. Materials and Design, 2018, 143:12-19. [24] DOU L, YUAN Z F, LI J Q, et al. Surface tension of molten Al-Si alloy at temperatures ranging from 923 to 1123 K[J]. Chinese Science Bulletin, 2008, 53(17):2593-2598. [25] KRUTH J P, LEVY G, KLOCKE F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Annals-Manufacturing Technology, 2007, 56(2):730-759. [26] CHEN H Y, GU D D, XIONG J P, et al. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting[J]. Journal of Materials Processing Technology, 2017, 250:99-108. |