航空学报 > 2022, Vol. 43 Issue (4): 525331-525331   doi: 10.7527/S1000-6893.2021.25331

铝合金激光增材制造支撑布局及精确成形机制

杨建凯1,2, 顾冬冬1,2, 葛庆1,2, 檀晨晨1, 文雨1   

  1. 1. 南京航空航天大学 材料科学与技术学院, 南京 210016;
    2. 江苏省高性能金属构件激光增材制造工程实验室, 南京 210016
  • 收稿日期:2021-01-26 修回日期:2021-02-20 发布日期:2021-04-29
  • 通讯作者: 顾冬冬 E-mail:dongdonggu@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(51735005);国家重点研发计划(2016YFB1100101、2018YFB1106302);江苏省第十五批"六大人才高峰"创新人才团队(TD-GDZB-001);国家自然科学基金创新研究群体(51921003);江苏省研究生科研与实践创新计划(KYCX20_0194)

Support layout and precise forming mechanism of aluminum alloy for laser additive manufacturing

YANG Jiankai1,2, GU Dongdong1,2, GE Qing1,2, TAN Chenchen1, WEN Yu1   

  1. 1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing 210016, China
  • Received:2021-01-26 Revised:2021-02-20 Published:2021-04-29
  • Supported by:
    National Natural Science Foundation of China (51735005); National Key Research and Development Program "Additive Manufacturing and Laser Manufacturing" (2016YFB1100101, 2018YFB1106302); The 15th Batch of "Six Talents Peaks" Innovative Talents Team Program "Laser Precise Additive Manufacturing of Structure-Performance Integrated Lightweight Alloy Components" (TD-GDZB-001); National Natural Science Foundation of China for Creative Research Groups (51921003); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_0194)

摘要: 航空航天领域复杂金属构件在激光增材制造过程中大多需添加支撑结构,尤以块状支撑结构应用最广泛。合理确定支撑间距及悬垂面后处理加工余量,对于激光精确成形至关重要。研究了支撑间距对选区激光熔化成形AlSi10Mg材料致密度、表面形貌、显微组织、硬度的影响规律,并通过数值模拟的方法揭示了支撑结构对成形性的影响机理。研究表明,不同支撑间距试样的平均致密度变化范围为96.7%~97.3%,当支撑间距小于1 mm时,去除支撑后试样下表面粗糙度稳定为约0.28 mm。成形试样底层受支撑结构影响可分为缺陷区、过渡区、致密区,在支撑间距为1 mm以下时,缺陷区厚度保持在约456 μm。缺陷区的网状Si较粗大且稀疏,硬度为90 HV0.1;致密区的网状Si较细小且密集,硬度为115 HV0.1。支撑结构能有效阻止金属熔体侵入下层粉末,使熔池维持正常形态(最大长度为190 μm,最大宽度为100 μm),有利于熔道内金属粉末充分熔化,保证成形性。激光增材制造铝合金复杂构件时设定最优支撑间距为1 mm可减少材料浪费和加工时长,设定悬垂面加工余量为456 μm可在后处理中将缺陷区去除以保证构件尺寸精度及性能,实现激光精确成形。

关键词: 选区激光熔化, AlSi10Mg, 支撑结构, 显微组织, 显微硬度, 数值模拟

Abstract: Most of the complex components applied in the aerospace field need to add support structures in the selective laser melting process, and the block support structure is the most widely used one. To determine the reasonable support spacing and the post-processing allowance of the overhang surface, the influence of support spacing on the relative density, surface morphology, microstructure and hardness of the selective laser melted AlSi10Mg material is studied, and the influence mechanism of the support structure on the formability of the material is revealed through numerical simulation. The results show that the average relative density of the samples varied from 96.7% to 97.3%. When the support spacing is less than 1 mm, the roughness of the lower surface of the samples maintained to be about 0.28 mm after the support is removed. The start few layers of the samples can be divided into the defect area, transition area, and dense area. When the support spacing was less than 1 mm, the thickness of the defect area is maintained to be about 456 μm. The network Si phase in the defect area is coarse and sparse, with a microhardness of 90 HV0.1, while in the dense area, the network Si phase is fine and dense, with a microhardness of 115 HV0.1. The support structure can effectively prevent the molten metal from invading the lower layer powder, and maintain the normal shape of the molten pool (the maximum length is 190 μm, and the maximum width is 100 μm), which is conducive to the full melting of the metal powder in the molten channel to ensure the formability of the material. In laser additive manufacturing of aluminum alloy complex components, setting the optimal support spacing to 1 mm can reduce material waste and processing time. If the machining allowance is set to 456 μm for the overhang surface of the complex component, the defect area can be removed in post-processing to ensure the dimensional accuracy and performance of the component, and precise laser forming can then be realized.

Key words: selective laser melting, AlSi10Mg, support structure, microstructure, microhardness, numerical simulation

中图分类号: