[1] 高玉魁. 表面完整性理论与应用[M]. 北京:化学工业出版社, 2014:1-11. GAO Y K. Theory and application of surface integrity[M]. Beijing:Chemical Industry Press, 2014:1-11(in Chinese). [2] DAVIM J P. Surface integrity in machining[M]. London:Springer, 2010:1-35. [3] 高玉魁, 刘天琦, 殷源发, 等. 表面完整性对30CrMnSiNi2A钢疲劳极限的影响[J]. 航空材料学报, 2002, 22(2):21-23. GAO Y K, LIU T Q, YIN Y F, et al. Influence of surface integrality on fatigue limit for 30CrMnSiNi2A steel[J]. Journal of Aeronautical Materials, 2002, 22(2):21-23(in Chinese). [4] YAO C F, LIN J N, WU D X, et al. Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts[J]. Chinese Journal of Aeronautics, 2018, 31(4):826-836. [5] WU D X, ZHAND D H, YAO C F. Effect of turning and surface polishing treatments on surface integrity and fatigue performance of nickel-based alloy GH4169[J]. Metals, 2018, 8(7):549. [6] LIU G L, HUANG C Z, ZOU B, et al. Surface integrity and fatigue performance of 17-4PH stainless steel after cutting operations[J]. Surface and Coatings Technology, 2016, 307:182-189. [7] SUÁREZ A, VEIGA F, DE LACALLE L N L, et al. Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718[J]. Journal of Materials Engineering and Performance, 2016, 25(11):5076-5086. [8] 罗学昆, 吴小燕, 王科昌, 等. 表面完整性对FGH95合金高温疲劳性能的影响[J]. 航空材料学报, 2020, 40(2):53-60. LUO X K, WU X Y, WANG K C, et al. Effect of surface integrity evolution on high-temperature fatigue property of FGH95 alloy[J]. Journal of Aeronautical Materials, 2020, 40(2):53-60(in Chinese). [9] 杨慎亮, 李勋, 王子铭, 等. TC4侧铣表面完整性对试件疲劳性能的影响[J]. 表面技术, 2019, 48(11):372-380. YANG S L, LI X, WANG Z M, et al. Influence of side milling on surface integrity and fatigue behavior of TC4 specimens[J]. Surface Technology, 2019, 48(11):372-380(in Chinese). [10] TRAVIESO-RODRÍGUEZ J A, JEREZ-MESA R, GÓMEZ-GRAS G, et al. Hardening effect and fatigue behavior enhancement through ball burnishing on AISI 1038[J]. Journal of Materials Research and Technology, 2019, 8(6):5639-5646. [11] RODRÍGUEZ A, CALLEJA A, LÓPEZ DE LACALLE L N, et al. Burnishing of FSW aluminum Al-Cu-Li components[J]. Metals, 2019, 9(2):260. [12] ZHUANG W, WICKS B. Mechanical surface treatment technologies for gas turbine engine components[J]. Journal of Engineering for Gas Turbines & Power, 2003, 125(4):1021-1025. [13] MCCLUNG R C. A literature survey on the stability and significance of residual stresses during fatigue[J]. Fatigue & Fracture of Engineering Material & Structures, 2007, 30(3):173-205. [14] 高玉魁. 残余应力基础理论及应用[M]. 上海:上海科学技术出版社, 2019:1-14. GAO Y K. Basic theory and application of residual stress[M]. Shanghai:Shanghai Scientific & Technical Publishers, 2019:1-14(in Chinese). [15] GILL C M, FOX N, WITHERS P J. Shakedown of deep cold rolling residual stresses in titanium alloys[J]. Journal of Physics D:Applied Physics, 2008, 41(17):174005. [16] NIKITIN I, BESEL M. Residual stress relaxation of deep-rolled austenitic steel[J]. Scripta Materialia, 2008, 58(3):239-242. [17] SAALFELD S, OEVERMANN T, NIENDORF T, et al. Consequences of deep rolling on the fatigue behavior of steel SAE 1045 at high loading amplitudes[J]. International Journal of Fatigue, 2019, 118:192-201. [18] BENEDETTI M, FONTANARI V, MONELLI B D. Numerical simulation of residual stress relaxation in shot peened high-strength aluminum alloys under reverse bending fatigue[J]. Journal of Engineering Materials and Technology, 2010, 132(1):011012 [19] JAMES M R. The relaxation of residual stresses during fatigue[M]. Boston:Springer, 1982:297-314. [20] CHIN K S, IDAPALAPATI S, PARADOWSKA A, et al. Mechanical stress relaxation of a laser peened and shot peened Ni-based superalloy[C]//International Conference on Advanced Surface Enhancement. Singapore, Springer, 2019:182-189. [21] SANO Y, AKITA K, TAKEDA K, et al. Stability of residual stress induced by laser peening under cyclic mechanical loading[J]. International Journal of Structural Integrity, 2011, 2(1):42-50. [22] YOU C, ACHINTHA M, SOADY K A, et al. Low cycle fatigue life prediction in shot-peened components of different geometries-part I:residual stress relaxation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(5):761-775. [23] WANG Z, CHEN Y, JIANG C. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment[J]. Applied Surface Science, 2011, 257(23):9830-9835. [24] JUIJERM P, ALTENBERGER I. Residual stress relaxation of deep-rolled Al-Mg-Si-Cu alloy during cyclic loading at elevated temperatures[J]. Scripta Materialia, 2006, 55(12):1111-1114. [25] KODAMA S. The behavior of residual stress during fatigue stress cycles[C]//Proceedings of the International Conference on Mechanical Behavior of Metals II. Kyoto:Society of Material Science, 1972:111-118. [26] HAN S, LEE T, SHIN B. Residual stress relaxation of welded steel components under cyclic load[J]. Steel Research, 2002, 73(9):414-420. [27] ZHUANG W Z, HALFORD G R. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue, 2001, 23:31-37. [28] HOLZAPFEL H, SCHULZE V, VÖHRINGER O, et al. Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures[J]. Materials Science and Engineering:A, 1998, 248(1-2):9-18. [29] DALAEI K, KARLSSON B, SVENSSON L E. Stability of shot peening induced residual stresses and their influence on fatigue lifetime[J]. Materials Science and Engineering:A, 2011, 528(3):1008-1015. [30] MAUDUIT C, KUBLER R, BARRALLIER L, et al. Analysis of residual stress relaxation under mechanical cyclic loading of shot-peened TRIP780 steel[C]//Materials Research Proceedings. Millersville, PA:Springer, 2017:85-90. [31] BROITMAN E. Indentation hardness measurements at macro-, micro-, and nanoscale:a critical overview[J]. Tribology Letters, 2017, 65(1):23. [32] ZAROOG O S, ALI A, SAHARI B B, et al. Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy[J]. International Journal of Fatigue, 2011, 33(2):279-285. [33] ISA M R, ZAROOG O S, ALI F S. Relationship between compressive residual stress relaxation and microhardness reduction after cyclic loads on shot peened ASTM A516 Grade 70 steel[C]//Key Engineering Materials. Switzerland:Trans Tech Publications, 2018:232-236. [34] 钟丽琼, 严振, 梁益龙, 等. 残余应力场和不同应力比下TC11钛合金的高周疲劳性能[J]. 稀有金属材料与工程, 2015, 44(5):1224-1228. ZHONG L Q, YAN Z, LIANG Y L, et al. Property of high cycle fatigue of TC11 under residual stress and different stress ratios[J]. Rare Metal Materials and Engineering, 2015, 44(5):1224-1228(in Chinese). [35] LI D, CHEN H N, XU H. The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel[J]. Applied Surface Science, 2009, 255(6):3811-3816. [36] ALTENBERGER I, STACH E A, LIU G, et al. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening[J]. Scripta Materialia, 2003, 48(12):1593-1598. [37] 毛淼东. 超声滚压对TI-6Al-4V合金高低周疲劳性能影响研究[D]. 上海:华东理工大学, 2018:66-70. MAO M D. Study on the effect of ultrasonic deep rolling on the low-and high-cycle fatigue behavior of Ti-6Al-4V alloy[D]. Shanghai:East China University of Science and Technology, 2018:66-70(in Chinese). [38] YAN Z, WANG D, WANG W, et al. Ratcheting strain and microstructure evolution of AZ31B magnesium alloy under a tensile-tensile cyclic loading[J]. Materials, 2018, 11(4):513. [39] MARTIN U, ALTENBERGER I, SCHOLTES B, et al. Cyclic deformation and near surface microstructures of normalized shot peened steel SAE 1045[J]. Materials Science and Engineering:A, 1998, 246(1-2):69-80. [40] ALTENBERGER I, SCHOLTES B, MARTIN U, et al. Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304[J]. Materials Science and Engineering:A, 1999, 264(1-2):1-16. [41] YAO C F, WU D X, MA L F, et al. Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy[J]. Applied Surface Science, 2016, 387:1257-1264. [42] WU D X, YAO C F, ZHANG D H. Surface characterization and fatigue evaluation in GH4169 superalloy:Comparing results after finish turning; shot peening and surface polishing treatments[J]. International Journal of Fatigue, 2018, 113:222-235. [43] SUN J, WANG T, SU A, et al. Surface integrity and its influence on fatigue life when turning nickel alloy GH4169[J]. Procedia CIRP, 2018, 71:478-483. [44] DE LOS RIOS E R, TRULL M, LEVERS A. Modelling fatigue crack growth in shot-peened components of Al 2024-T351[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(8):709-716. [45] GALZY F, MICHAUD H, SPRAUEL J M. Approach of residual stress generated by deep rolling application to the reinforcement of the fatigue resistance of crankshafts[C]//Materials Science Forum. Switzerland:Trans Tech Publications, 2005:384-389. [46] NIE X F, HE W F, ZANG S L, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253:68-75. [47] DENG G J, TU S T, ZHANG X C, et al. Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650 C in air[J]. Engineering Fracture Mechanics, 2016, 153:35-49. [48] WANG J, ZHAO F T, SHA Y D, et al. Fatigue life research and experimental verification of superalloy thin-walled structures subjected to thermal-acoustic loads[J]. Chinese Journal of Aeronautics, 2020, 33(2):598-608. [49] 陈亚军, 刘辰辰, 王付胜. 预腐蚀和交替腐蚀作用下航空铝合金多轴疲劳行为及寿命预测[J]. 航空学报, 2019, 40(4):222465. CHEN Y J, LIU C C, WANG F S. Multiaxial fatigue behavior and life prediction of aerospace aluminum alloy under pre-corrosion and alternate corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):222465(in Chinese). [50] 王旭亮, 聂宏. 考虑载荷加载顺序的模糊Miner理论研究[J]. 中国机械工程, 2008, 19(22):2725-2728. WANG X L, NIE H. Study on fuzzy miner's rule considering load sequence[J]. China Mechanical Engineering, 2008, 19(22):2725-2728(in Chinese). [51] MESMACQUE G, GARCIA S, AMROUCHE A, et al. Sequential law in multiaxial fatigue, a new damage indicator[J]. International Journal of Fatigue, 2005, 27(4):461-467. [52] SASEK S, OLSSON M. The probability of HCF-Surface and sub-surface models[J]. International Journal of Fatigue, 2016, 92:147-158. [53] COLIN J, FATEMI A, TAHERI S. Cyclic hardening and fatigue behavior of stainless steel 304L[J]. Journal of Materials Science, 2011, 46(1):145-154. [54] KLUGER K. Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress[J]. International Journal of Fatigue, 2015, 80:22-29. [55] CARPINTERI A, KUREK M, ŁAGODA T, et al. Estimation of fatigue life under multiaxial loading by varying the critical plane orientation[J]. International Journal of Fatigue, 2017, 100:512-520. [56] KAROLCZUK A, MACHA E. Selection of the critical plane orientation in two-parameter multiaxial fatigue failure criterion under combined bending and torsion[J]. Engineering Fracture Mechanics, 2008, 75(3-4):389-403. [57] PAPADOPOULOS I V. Long life fatigue under multiaxial loading[J]. International Journal of Fatigue, 2001, 23(10):839-849. [58] 吴志荣, 胡绪腾, 宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. 机械工程学报, 2013, 49(2):59-66. WU Z R, HU X T, SONG Y D. Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[J]. Journal of Mechanical Engineering, 2013, 49(2):59-66(in Chinese). [59] AHMADZADEH G R, VARVANI-FARAHANI A. Fatigue damage and life evaluation of SS304 and Al 7050-T7541 alloys under various multiaxial strain paths by means of energy-based Fatigue damage models[J]. Mechanics of Materials, 2016, 98:59-70. [60] WU Z R, HU X T, LL Z X, et al. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4[J]. Journal of Mechanical Science and Technology, 2016, 30(5):1997-2004. [61] BERTO F, CAMPAGNOLO A, WELO T. Local strain energy density to assess the multiaxial fatigue strength of titanium alloys[J]. Frattura ed Integrità Strutturale, 2016, 10(37):69-79. [62] 金丹, 王巍, 田大将, 等. 非比例载荷下缺口件疲劳寿命有限元分析[J]. 机械工程学报, 2014, 50(12):25-29. JIN D, WANG W, TIAN D J, et al. Finite element analysis of fatigue life for notched specimen under nonproportional loading[J]. Journal of Mechanical Engineering, 2014, 50(12):25-29(in Chinese). [63] SHAMSAEI N, MCKELVEY S A. Multiaxial life predictions in absence of any fatigue properties[J]. International Journal of Fatigue, 2014, 67:62-72. |